МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Множення і ділення багатоцифрових чисел в десятковій системі числення багатоцифрових чиселТеоретичне обґрунтування алгоритму множення в десятковій системі числення має багато спільного з теоретичним обґрунтуванням алгоритму додавання, тому що використовується десятковий склад числа і основні закони даної арифметичної дії. Для виконання множення одноцифрових чисел складають таблицю множення (як суми однакових доданків) і запам’ятовують її. Множення багатоцифрових чисел на одноцифрове зводиться до використання таблиці множення, розподільного закону множення відносно додавання і правил додавання чисел. Наприклад, 453 · 4 = ( 4· 102 + 5 · 10 + 3) · 4 = (4 · 102) · 4 + (5 · 10) · 4 + 3 · 4. Користуючись переставним і сполучним законами множення, дістаємо: (4 · 4) · 102 + (5 · 4) · 10 + (3 · 4) = 16 · 102 + 20 · 10 + 12 = 1812. Як бачимо, множення багатоцифрового числа на одноцифрове зводиться до множення одноцифрових чисел і додавання, взагалі кажучи, багатоцифрових чисел. Множення числа на степінь 10k зводиться до приписування до множеного k нулів. Множення числа на багатоцифрове число зводиться до використання правила множення на одноцифрове число і степені числа 10. Для цього множник подають у вигляді суми степенів числа 10 з коефіцієнтами, що є цифрами числа. Наприклад, 453 · 132 = 453 · (1 · 102 + 3 · 10 + 2) = (453 · 1) · 102 + (453 · 3) · 10 + (453 · 2).
Результат множення можна дістати, якщо подати множення у такій формі: × 132 +1359 453___
Алгоритм множення числа х = an an-1 … a1 a0 на число у = bm bm-1 …b1b0 такий: 1. Записати множник у під множником х . 2. Помножити число х на число одиниць b0 числа у і записати добуток х·b0 під відповідними розрядами числа у. 3. Помножити число х на число десятків числа у і записати добуток х · b1, зміщуючи запис на один розряд вліво. 4. Цей процес множення продовжити до обчислення х · bm. 5. Знайдені добутки додати.
Ділення чисел – операція, обернена до операції множення. Вона полягає у знаходженні за відомим добутком двох множників і одним із множників другого (невідомого) множника. Тому при діленні одноцифрових і двоцифрових чисел на одноцифрове використовується таблиця множення одноцифрових чисел. При цьому можуть бути такі випадки: 1) за таблицею множення знаходять повну частку , як, наприклад, при діленні числа 63 на 9; 2) за таблицею множення знаходять неповну частку і обчислюють остачу, як у випадку ділення числа 65 на 9: 65 = 9 · 7 + 2, або 65 : 9 = 7 (ост. 2). Отже, взагалі процес ділення цілого невід’ємного числа а на натуральне число в є дія ділення з остачею, яка полягає у знаходженні таких цілих невід’ємних чисел q і r , що а = bq + r, де 0 ≤ r < b. Оскільки bq ≤ a < b (q + 1), то процес ділення числа а на число в полягає спочатку у знаходженні такого цілого числа q, яке б задовольняло цю рівність. Тоді остача r = а – b q. Наприклад, для виконання ділення 637 на 25 треба знайти такі цілі невід’ємні числа q і r, щоб 637 = 25 ∙ q + r. Подвійна нерівність 25q ≤ 637 < 25(q+1) дає змогу встановити число цифр у неповній частці q. Справді, оскільки 25 ∙ 10 < 637 < 25 · 100, то частка q – двоцифрове число. Для знаходження цифри її десятків помножимо послідовно дільник 25 на 10, 20, ... Оскільки 25 ∙ 20 < 637 <25 ∙ 30, то цифра десятків неповної частки дорівнює 2, а сама частка 20 < q < 30, тобто q = 20 + q1, де q1 – число одиниць. Через те що 25 ∙ (20 + q1) ≤ 637 < 25 ∙ (20 + q1 +1), маємо 500 + 25q1 ≤ 637 < 500 + 25(q1 +1), або 25q1 ≤ 137 < 25(q1 +1). Число q1 – одноцифрове. Його можна знайти, послідовно помножаючи 25 на 1, 2, 3, ... Дістанемо: 25 · 5 = 125, а 25 ∙ 6 = 150. Тому число одиниць частки дорівнює 5. Отже, неповна частка q = 25, a остача r = 637 – 635 = 12 і 637 = 25 · 25 + 12. Викладені міркування лежать в основі ділення «кутом»: _ 637 25 50 25 _ 137 125 Загальний алгоритм ділення цілого невід’ємного числа а на натуральне число b такий: 1. Якщо а = b, то частка q = 1, остача r = 0. 2. Якщо а > b і число розрядів у чисел а і b однакове, то, помножаючи b послідовно на числа 1, 2, ... ,9, знаходять частку q від ділення числа а на число b і остачу r = а – bq. 3. Якщо а > b і число розрядів у числі а більше, ніж у числі b, то частку і остачу шукають так. У числі а зліва відокремлюють стільки розрядів, скільки їх має число b чи на один розряд більше, а число с1, ними утворене, дорівнювало б чи було б більше від числа b; далі підбирають серед чисел 1, 2, ... , 9 такий множник q1, що bq1 ≤ c1, число bq1 підписують під числом c1 і віднімають. Дістають r1 = с1 – bq1. Це число записують під числом bq1; потім справа до r1 приписують цифри першого з невикористаних розрядів діленого а і порівнюють здобуте число з числом b; якщо воно не менше b, то повторюють вище розглянутий процес, якщо ж воно менше b, то приписують до нього ще стільки розрядів, щоб воно було не менше числа b, і знову застосовують розглянутий вище процес. Читайте також:
|
||||||||
|