![]()
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Розв’язання.Виходячи із геометричного змісту похідної коефіцієнт розтягу k = |w'(z0)|, а кут повороту α = arg w'(z0). Знайдемо похідну функції Так як |–2i| = 2 , a arg(–2i) = Завдання 23. Яка частина площини стикається при відображенні за допомогою функції w = f(z). 1) w = z3 +2. Розв’язання. Знайдемо похідну функції w = z3 + 2 та її модуль: При відображенні за допомогою функції w = f(z) стикається та частина площини, для точок якої виконується умова 0 < к < 1, або 0 < |w'| < 1. Отже 0 < 3(x2 + у2) <1, звідки маємо 0 < х2 + у2 < При відображенні за допомогою функції w = z3 + 2 стикається внутрішня частина кола §5. Відображеннязадопомогоюлінійноїфункції. Функція виду w = az + b , де а, b - сталі комплексні числа, називається лінійною. Відображення за допомогою цієї функції конформне у всій площині (w' = а ≠ 0). Якщо z та а подати у показниковій формі z = ρеiφ, а = |а|еiα , то Із останньої рівності слідує, що відображення за допомогою лінійної функції можна розглядати як суперпозицію таких відображень: 1) t = |a|z – розтяг в |a| разів 2) ζ= tеiα – поворот на кут а проти годинникової стрілки 3) w = ζ + b – паралельне зміщення на b = β1 +iβ2. Завдання 24.Знайти образ на w-площині області при відображенні за допомогою лінійної функції w=az + b. l) –l < Re z < l Розв’язання. Знайдемо модуль і аргумент похідної Відображення функцією
2)
4) Задана область і відображення 1)-3) подані на малюнках 3-6 Завдання25. Знайти одну з лінійних функцій, яка відображає область D на z-площині в область G на w-площині: 1) D: |z – 2i| < 1, G: |w – 2| < 2. Розв’язання.Задані області зображені на малюнках 7-8. Область D можна відобразити в область G , наприклад, так: 1) t = 2z 2) 3) Отже однією з лінійних функцій; що відображає область D на G є наступна:
§6. Відображеннязадопомогоюфункції Відображення w = При цьому функція всю розширену комплексну площину відображає у всю розширену комплексну площину (точки z = 0 та z = ∞ відображаються відповідно у точки w = ∞ і w = 0). Функція Кругова властивість: коло в широкому розумінні функція Властивість збереження симетрії: точки, які симетричні на z-площині відносно кола в широкому розумінні, відображаються у точки симетричні відносно образу цього кола на w-площині. Точки симетричні відносно прямої - це точки, що лежать на перпендикулярі до цієї прямої і рівновіддалені від неї. Точки M та N симетричні відносно кола з центром в т. О і радіусом R, якщо вони лежать на одному промені, початком якого є точка 0, і задовольняють рівності ОМ · ON = R2. Для здійснення відображення за допомогою функції
Розв’язання.Виконаємо малюнок заданої області (мал. 11). Для відображення за допомогою функції Так як межі заданої області кола |z – і| = 1 та |z – 2i| = 2, проходять через початок координат, то вони відобразяться у прямі. Пряма виражається двома точками, тому знайдемо образи двох точок кола |z – i| = 1 та образи двох точок кола |z – 2i| = 2: Отже коло |z – і| = 1 відобразиться у пряму Im w = Образом кола |z – 2i| = 2 є пряма Im w =
За властивістю конформних відображень внутрішні точки переходять у внутрішні, таким чином образом заданої області є смуга Завдання 27.Відобразити за допомогою функції Завдання 28.Смугу –1 < Re z < 1 відобразити за допомогою функції Завдання 29.Знайти конформне відображення області §7. Дробово-лінійнафункція. Функція виду w Дробово-лінійна функція Для функції Існує єдине дробово-лінійне відображення, яке відображає три довільно взяті точки z-площини z1, z2, z2відповідно у три точки w-площини w1, w2, w3. Це відображення визначається рівністю
1) Розв’язання. Виконаємо малюнок області D (мал. 13). Межами області є коло |z –1| = 1 та пряма Im z = 0. Обидві цілінії проходять через точку z = 2 , в якій знаменник дробу
Рівняння прямої, що є образом кола |z – 1| = 1, буде Rew = Точка z = i є внутрішньою точкою області D , тому точка Завдання 31. Знайти конформне відображення верхньої півплощини на нижню, при якому точки 0, 1, ∞ відображаються у точки ∞, 1, 0, відповідно. Розв’язання. Для знаходження дробово-лінійного відображення, яке точки 0, 1, ∞ відображає у точки ∞, 1, 0 відповідно скористаємося ангармонійним відношенням. Замінивши різниці, в які входить нескінченно віддалена точка, одиницею, одержимо Звідки Завдання 32. Знайти конформне відображення площини z самої в себе, яке точки z1, z2, z3, переводить відповідно у точки w1, w2, w3. Завдання 33. Відобразити конформно круг |z – l|<2 в круг |w – i| < 2 так, щоб точка О перейшла в центр круга. Завдання 34. Відобразити конформно півплощину Im z > 1 в круг |z – 2і| < 2так, щоб точка 2i залишилася нерухомою. Завдання 35. Знайти конформне відображення круга |z| < 2 на півплощину Im w > 0, яке точку О переводить у точку Завдання 36. Знайти умови, при яких суперпозиція двох дробово-лінійних функцій є: а) дробово-лінійною функцією; б) лінійною функцією. Дослідити чи можливі інші випадки. §8. Степеневафункціязраціональнимпоказником Запишемо функцію Похідна функції t = zp (де pєN) дорівнює t' = pzp-1і є скінченною, відмінною від нуля у всіх точках площини, крім z = 0 та z = ∞. Відображення цією функцією конформне всюди, крім зазначених точок. Запишемо z та t в полярних координатах z=reiφ, t = ρеiθ, тоді із співвідношення t = zp маємо Якщо область задана на z-площині через нерівності для координат r та φ, то за допомогою рівностей (1) знаходимо нерівності для змінних ρ та θ, які визначають образ області у t-площині. Розглянемо тепер функцію Як відомо, ця функція не є однозначною, вона складається з q функцій, які знаходяться за формулами (якщо t = peiθ) Кожна із вказаних функцій називається відповідною віткою степеневої функції (2). Відображення функцією Це відображення площину зрозрізом 0 < θ < 2πпереводить у область Функція
Завдання37. Виконати відображення області D на z-площині за допомогою функції w = f(z) 1)
Читайте також:
|
||||||||
|