МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Мода варіаційного ряду.Варіаційний ряд може не мати моди, мати одну моду (унімодальний в. р.) або декілька мод (мультимодальний в. р.). Зокрема, якщо моди дві, то в. р. – бімодальний. Мода, якщо вона існує, завжди є одним із можливих значень відповідної ознаки. Модою з. в. р.у1, у2, …, уп називається варіанта, яка найчастіше зустрічається в даному в.р.: Мо=уе, якщо варіанта уе найчастіше зустрічається в даному в.р. З означення моди з. в. р. витікає, що остання знаходиться візуально без будь-яких обчислень. Якщо всі варіанти даного з. в. р. зустрічаються однаково часто, то прийнято вважати, що останній не має моди. Модою д. в. р.називається варіанта, частота або частка якої є найбільшою: Мо=хе, якщо fe ≥ fi або we ≥wi (i= ). З означення моди д. в. р. витікає, що остання знаходиться візуально з таблиці або полігону даного д. в. р. Якщо всі частоти або частки д. в. р. однакові, то прийнято вважати, що останній не має моди. Моду з. в. р. або д. в. р. можна вважати статистичним аналогом і точковою оцінкоюмоди генеральної сукупності, з якої вибрана статистична сукупність, для якої побудовано з. в. р. або д. в. р. Модою і. в. р.називається статистичний аналог і точкова оцінка моди генеральної сукупності, з якої вибрана статистична сукупність, що згрупована в даний і. в. р. При цьому, якщо відповідна ознака є дискретною, то значення моди, обчислене за нижченаведеними формулами, округлюється до найближчого цілого числа. Для обчислення моди і. в. р. спочатку знаходимо модальний інтервал (інтервали), яким є інтервал з найбільшою частотою або часткою. Якщо і. в. р. має один модальний інтервал або декілька ізольованих (тобто, несусідніх) модальних інтервалів, то для кожного з них мода знаходиться за формулою: , (1.4) де хМо – нижня межа модального інтервалу, fMo (wMo) – частота (частка) модального інтервалу, fMo-1 (wMo-1) – частота (частка) інтервалу перед модальним, fMo+1 (wMo+1) – частота (частка) інтервалу після модального, k=1. Якщо і. в. р. має групу сусідніх модальних інтервалів, то для кожної з них знаходиться одна мода за формулою (1.4), де хМо – нижня межа крайнього лівого з модальних інтервалів даної групи, k – кількість модальних інтервалів даної групи, fMo-1 (wMo-1) – частота (частка) інтервалу перед даною групою модальних інтервалів, fMo+1 (wMo+1) – частота (частка) інтервалу після даної групи модальних інтервалів. Якщо модальним виявиться перший або останній інтервал (байдуже, ізольований чи сусідній), то у формулі (1.4) відповідно fMo-1=wMo-1= 0 або fMo+1=wMo+1 = 0. Очевидно, що кількість мод і. в. р. дорівнює сумі кількості ізольованих модальних інтервалів і кількості груп сусідніх модальних інтервалів. Якщо частоти або частки всіх інтервалів даного і. в. р. однакові, то прийнято вважати, що останній не має моди. У статистиці прийнято вважати, що мультимодальність варіаційного ряду розподілу, як правило, свідчить про кількісну неоднорідність статистичної сукупності, що вивчається.
Читайте також:
|
||||||||
|