![]()
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||||||||||||||||||||||||||||||||||||||
Гранулометричного складуТаблиця 2.2
Для класифікації глинистих грунтів використовують показник, який називається числом пластичності
Вологість на межі текучості відповідає такій вологості грунту, при якій ста-ндартний балансирний конус масою 76г занурюється в грунтове тісто на 10мм за 5с. Методика випробувань викладена в [3]. Вологість грунту відповідає вологості на межі розкочування, коли джгутики грунтового тіста діаметром 3мм розпадаються в процесі розкочування на елементи довжиною 3 ...10мм. При більшому діаметрі грунт знаходиться в твердому стані (недостатня вологість), а при меншому - в пластичному стані (надмірна вологість). Методика випробувань викладена в [3]. Великий вміст у грунтах глинистих частинок збільшує питому поверхню грунту, відповідно, збільшується кількість води, необхідної для переходу грунту з твердого стану в текучий. І навпаки, частинки більших розмірів потребують менше води для такого переходу. Безумовно, стан грунту визначається, крім його вологості, ще й мінералогічним складом. Даний підхід цього не враховує, але відповідає основним потребам будівельної практики. За числом пластичності глинисті грунти розділяються на супіски – 1 ≤ IL ≤ 7, суглинки – 7 < IL ≤ 17і глини – IL > 17.
Глинисті грунти залежно від 6. Класифікація грунтів.Повна класифікація грунтів наводиться в ДСТУ Б В.2.1-2-96 “Грунти. Класифікація” [16]. Згідно стандарту всі грунти розділяються на класи, групи, підгрупи, типи, види і різновиди. К л а с и- за загальним характером структурних зв’язків. Це природні скельні, дисперсні, мерзлі, техногенні грунти. Г р у п и- за характером структурних зв’язків з урахуванням їх міцності. Клас скельних грунтів розділяють на скельні та напівскельні, дисперсних - на зв’язні та незв’язні. П і д г р у п и- за походженням та умовами утворення. Скельні грунти відносять до магматичних, метаморфічних та осадових підгруп; дисперсні - до осадової підгрупи. Т и п- за речовинним складом. Дисперсні розділяються на мінеральні, органомінеральні та органічні. В и д- за найменуванням грунтів з урахуванням розмірів частинок та показників властивостей. Мінеральні грунти розділяють на великоуламкові, піски і глинисті грунти; органомінеральні - на мули, сапропелі та заторфовані грунти; органічні - на торфи. Р і з н о в и д и- за кількісними показниками речовинного складу, властивостей та структури грунтів. Великоуламкові грунти та піски розділяються згідно табл. 2.2; глинисті грунти та мули - за числом пластичності (див. п. 2.4) і за показником текучості (див. табл. 2.3); великоуламкові грунти та піски - за коефіцієнтом водонасичення (див. п. 2.3); піски - за щільністю складу
Розглянемо споруду, яка розміщена поблизу укосу і сприймає горизонтальні й вертикальні навантаження (рис. 3.1). В даному випадку несуча здатність грунту може бути вичерпана в результаті втрати стійкості укосу (лінія 1), площинного зсуву фундаменту (лінія 2) чи випирання грунту з-під підошви фундаменту (лінія 3).
1. Опір грунтів зсуву.Опір зсуву в лабораторних умовах найчастіше визначають за допомогою одноплощинних зсувних приладів, основною частиною яких є зрізувач (рис. 3.2). Випробування виконують таким чином. У спеціальних приладах (ущільнювачах) попередньо ущільнюють зразки грунту під тиском, при якому вони будуть випробуватись на зсув (наприклад, 0,1; 0,2; 0,3мПа). Потім переносять один зразок у зрізувач, прикладають вертикальне навантаження, яке створює нормальний тиск, при якому ущільнюва-вся зразок грунту в ущільнювачі (наприклад, р1=0,1мПа → р=N/A, де A – площа поперечного перерізу зразка грунту) і окремими ступенями передають на рухому обойму горизонтальні навантаження до моменту, коли відбудеться зсув. Кожний ступінь витримується до умовної стабілізації, при якій горизонтальне переміщення верхньої (рухомої) частини зразка не перевищує 0,01мм за останні 2хв. спостережень.
За результатами дослідів будують графік. На осі абсцис наносять нормальні напруження Для графіків відповідно можна записати
Якщо лінію залежності
Методика випробувань викладена в [17].
Як видно із (3.4), опір зсуву, а відповідно і міцність водонасичених глинистих грунтів зменшується за рахунок порових напружень. У водонасичених пісках процес консолідації відбувається дуже швидко і всі напруження сприймаються грунтовими частинками (скелетом). Для кращого розуміння процесу ущільнення грунту в часі розглянемо механічну модель грунтової маси (всі пори грунту повністю заповнені водою - п.1.2). В циліндричній посудині, яка має поршень з мікроскопічними отворами, розміщені пружина і вода (рис. 3.6). Пружина моделює роботу скелета грунту. Зразу ж після передачі тиску Механічна модель (рис. 3.6) демонструє, що в процесі ущільнення грунту в ньому одночасно діють дві системи тисків: тиск в скелеті грунту - ефективний, і тиск в поровій воді - нейтральний. Ефективний тиск характеризує напружений стан скелета грунту. Під цим тиском грунт уже деформувався, тобто ущільнився і зміцнився. Отже, такий тиск позитивно впливає на стан грунту. Нейтральний тиск не впливає на напружений стан скелета повністю водонасченого грунту, тотбо він нейтральний у відношенні до скелета грунту.
Методика випробувань викладена в [13]. Кут внутрішнього тертя і питоме зчеплення визначають на основі не менше 18 дослідів. У цьому випадку коефіцієнти Тема 4. Модуль ДЕФОРМАЦІЇ ГРУНТІВ 1. Компресійні дослідження. Для визначення деформації грунтів необхідно знати коефіцієнт пропорційності між деформаціями і напруженнями - модуль деформації. Модуль деформації поширених, відносно однорідних матеріалів (бетон, метал) наводиться в довідниках. Природні ж грунти за своїми механічними властивостями є дуже різноманітними. Тому, зазвичай, перед розрахунками грунтових основ виконують дослідне визначення модуля деформації. Модуль деформації, в основному, визначають за результатами компресійних, cтабілометричних і штампових випробувань або за таблицями будівельних норм СНиП 2.02.01-83 [24]. Оскільки грунт складається з твердих частинок і пор (частково чи повністю заповнених водою і повітрям), то теоретично при його стисненні повинні зменшуватись об‘єми всіх компонентів. Оскільки напруження стиснення, які зазвичай виникають в основах фундаментів, при дії навантажень від надземних конструкцій, порівняно незначні, об‘ємні деформації твердих частинок незрівнянно малі і до уваги не беруться. Отже, можна вважати, що зміна об‘єму грунту при стисненні відбувається лише за рахунок зміни об‘єму пор, яка може відбуватися внаслідок взаємного переміщення окремих частинок в результаті руйнування структурних зв‘язків груту з витісненням повітря і води.
Оскільки зразок грунту в кільці не має можливості бічного розширення, то зміну його пористості
Згідно з (2.10)
Урахувавши
Після визначення значень При зростанні тиску коефіцієнт пористості зменшується (лінія 1 рис. 4.2). Якщо тиск поступово зменшувати, то зразок частково відновить деформацію і коефіцієнт пористості зросте (лінія 2 рис. 4.2). Первинна висота зразка не буде повністю відновлена, тому що при розвантаженні відновлюються лише пружні деформації. На початковій ділянці залежність
Тангенс кута нахилу цієї прямої до осі тисків називається коефіцієнтом стисливості
З певним (доволі суттєвим) наближенням можна записати рівняння компресійної кривої у такому вигляді
Модуль деформації грунту за результатами компресійних дослідів визначають за виразом
В компресійному приладі грунт може деформуватись тільки у вертикальному напрямку. Це погано моделює роботу грунту під фундаментами невеликих розмірів (фундаменти більшості будівель), де величина горизонтальних деформацій є суттєвою. Під фундаментами великих розмірів переважають деформації грунту у вертикальному напрямку. Тому модуль деформації, одержаний за результатами компресійних випробувань, широко використвується для проектування гідротехнічних споруд, а в промисловому і цивільному будівництві тільки для споруд III класу капітальності. З урахуванням вищесказаного модуль деформацій грунтів
Методика випробувань викладена в [17]. 2. Стабілометричні випробування. Особливістю випробувань на трьохосьове стиснення в стабілометрі є можливість одночасного визначення характеристик стисливості і міцності.
Методика випробувань викладена в [13]. 3. Метод штампових випробувань є еталонним, тобто найбільш точним. Його суть полягає в наступному. На жорсткий круглий штамп окремими ступенями передають навантаження і визначають при цьому його осідання. Кожний ступінь витримують до моменту умовної стабілізації, при якій переміщення штампа не повинні перевищувати 0,1мм за останні 0,5; 1,0 або 2год. залежно від грунту. Випробування можуть виконуватись у свердловинах, шурфах або котлованах. Площа штампа залежить від місця випробування (свердловина, котлован) і змінюється від 600 до 10000см2. Навантаження передають гідродомкратами або тарованими вантажами. На рис. 4.5 наведена найпоширеніша схема штампових випробувань. Методика випробувань наведена в [2].
Модуль деформації визначають за формулою
!!! Поправочний коефіцієнт
Тема 5. ВОДОПРОНИКНІСТЬ ГРУНТУ Під час проектування водозниження, осушення та водопостачання треба знати скільки води надходить до різних водозабірних споруд (колодязів, свердловин, канав, будівельних котлованів). Приплив води до водозабірних споруд обчислюють з урахуванням характеру її руху (ламінарний або турбулентний) у водоносному шарі, гідравлічних умов (води ненапірні або напірні) та особливостей обладнання водозабірної споруди. Підземні води, як правило, перебувають у русі (рухаються в порах, тріщинах та розломах грунтів). Рух води в тріщинах та розломах - швидкий, турбулентний. Рух води в порах гірських порід можна розглядати як спокійний, ламінарний. Цей рух одержав назву фільтрації. 1. Коефіцієнт фільтрації. Фільтрація має певну закономірність, яка була вперше встановлена французьким інженером А. Дарсі в 1856 p. Дарсі сконструював прилад для вивчення водопроникності пісків (рис. 5.1). З допомогою цього приладу він одержав таку залежність
Розділивши ліву та праву частини виразу (5.1) на
Об‘єм профільтрованої води буде тим більшим, чим більша її швидкість при фіксованих значеннях решти параметрів. Тому величину
В лабораторних умовах коефіцієнт фільтрації визначається з допомогою різних приладів. Такі прилади принципово нічим не відрізняються від приладу Дарсі (наприклад, універсальна трубка). Коефіцієнт фільтрації, (м/доб), при заданій температурі визначають за формулою
864 - коефіцієнт для переведення одиниць см/с в м/доб; Величини Методика випробувань викладена в [12]. Найточніше коефіцієнт фільтрації можна визначити шляхом проведення дослідних відкачувань води в польових умовах.
Для ділянки ВС швидкість фільтрації знаходять за виразом
Тема 6. ОСОБЛИВОСТІ ФІЗИКО-МЕХАНІЧНИХ ХАРАКТЕРИСТИК СТРУКТУРНО-НЕСТІЙКИХ і деяких особливих ГРУНТІВ До структурно-нестійких належать такі грунти, які під дією певних факторів можуть змінювати свої фізико-механічні характеристики і різко деформуватись: лесові - структура їх різко порушується при замочуванні; мерзлі - структура їх різко порушується при відтаненні; пухкі піски - різко ущільнюються при дії динамічних навантажень; мули і чутливі глини - деформаційні і міцнісні характеристики різко зменшуються при порушенні їх природної структури. До особливих грунтів відносяться: набухаючі - при зволоженні суттєво збільшуються в об‘ємі, а при висиханні - зменшуються; торфи і заторфовані грунти - мають значну стисливість і малу міцність. 1. Просідаючі грунти та їх властивості.Просідаючими називаються глинисті грунти, які під дією зовнішнього навантаження або (і) власної ваги при замочуванні водою чи розчинами дають додаткове осідання, що називається просіданням і відносне просідання для яких Властивості просідання мають леси та лесовидні супіски і суглинки. Леси мають у своєму складі понад 50% пилуватих частинок, легкорозчинні солі та пори великих розмірів. При замочуванні структурних зв’язків, які утворені при участі розчинних солей, вони (зв‘язки) руйнуються, частинки ущільнюються, заповнюючи вільні пори, об’єм грунту зменшується, тобто відбувається його просідання. Просідаючі грунти займають понад 80% території України і розповсюджені на всій площі за винятком Полісся, Карпат, південної частини Криму та західної частини Одеської області. Найбільшої товщини лесові відкладення досягають в південних та східних регіонах. У південній частині Рівненської області розповсюджені лесовидні супіски і суглинки товщиною, переважно, до 5м. Лесові та лесовидні грунти завжди залягають безпосередньо під рослинним шаром, проте можуть бути й похованими (розміщуватись під насипним шаром).
Відносне просідання найчастіше визначають в компресійних приладах.
Методика випробувань викладена в [9]. Суть методу двох кривих полягає в тому, що в компресійних приладах випробовують зразки грун-ту природної вологості та водонасичені (рис. 6.3). За цими графіками легко можна визначити Методика випробувань викладена в [9]. Грунти відносять до просідаючих, якщо 2. Набухаючі грунти та їх властивості.До набухаючихвідносяться глинисті грунти, які при замочуванні водою чи іншими розчинами збільшуються в об’ємі, причому величина відносного набухання у вільному стані (без навантаження)
У першому випадку на зразок висотою Методика випробувань викладена в [11].
Методика випробувань викладена в [11]. Грунти відносять до набухаючих (при якомусь тиску), якщо Головну роль у процесі набухання відіграють глинисті частинки. Особливе значення має наявність таких мінералів, як іліт і монтморилоніт. Вода, потрапляючи в такі грунти, здатна розклинювати тверді мінеральні частинки, що призводить до набухання грунту. Процес набухання має зворотній характер. Якщо сушити грунт після набухання, то виникає усадка – зменшення об‘єму. Методика випробувань викладена в [11]. На Україні набухаючі грунти розповсюджені переважно в Криму, поблизу міст Керч та Феодосія.
Розділ ІІ. механіка грунтів Тема 7. ВИЗНАЧЕННЯ НАПРУЖЕНЬ В ГРУНТАХ
1. Фази напруженого стану грунтів. Нехай на поверхні грунту встановлено жорсткий фундамент (рис. 7.1), завантажений навантаженням
При подальшому збільшенні тиску зони зсувних деформацій поширюючись в сторони, будуть призводити до ущільнення грунту і по сторонах від цих зон, внаслідок чого вигин кривої на ділянці При подальшому збільшенні тиску зони локальних зсувів розширюються і в момент, коли досягають ширини фундаменту, відбувається різке осідання фундаменту. На кривій появляться майже вертикальна крива ділянка Таким чином, четверта фаза абсолютно недопустима для експлуатації будівель і споруд. Вони можуть експлуатуватись в першій і другій фазі (в третій - при умові, що фактичні осідання фундаментів не перевищують їх допустимі значення). 2. Основні припущення. Вище (п. 7.1) було доведена можливість використання в межах двох фаз напружено-деформованого стану (пружних деформацій і локальних зсувів) лінійної залежності між тиском і осіданням фундаменту. Отже, в межах цих фаз грунт вважають лінійно-деформованим тілом. Внаслідок несуцільності (дисперсності) грунту встановити дійсний напружений стан, який виникає в якій-небудь точці його масиву, з використанням теорії пружності неможливо. Тому обмежуються визначенням середньої інтенсивності напружень в потрібній точці основи, приймаючи умовно, що грунт є суцільним тілом. Більшість грунтів володіє анізотропією. Проте при рішенні інженерних задач з деяким наближенням приймають, що грунти є ізотропними.
3. Напруження в грунті від дії зосередженого навантаження. Напружений стан у деякій точці простору характеризується сукупністю діючих у ній напружень. В умовах просторової задачі виділяють такі напруження (рис. 7.3).
Розглянемо зараз точку
Відносна деформація грунту на відрізку
Згідно з законом Гука, залежність між напруженнями і деформаціями має вигляд
Для знаходження добутку коефіцієнтів
Підставляємо в рівняння (7.6) значення для Підставляємо отримане значення у вираз (7.6)
На похилу ділянку
Перейдемо до декартової системи координат. Оскільки
Врахувавши те, що
Позначимо
Аналогічним чином можуть бути знайдені решта напружень Якщо на поверхні діє декілька сил (рис.7.8), то
5. Напруження в грунті від дії рівномірно розподіленого навантаження. Теоретичне рішення цієї задачі доволі складне. Його отримав А.Ляв в 1929р. Для визначення напружень від дії таких навантажень необхідно розподілити зосереджене навантаження по площі його передачі (проінтегрувати вирази для зосередженої сили по площі її передачі) Нехай на площі шириною
|
||||||||||||||||||||||||||||||||||||||||||||
|