Переведення чисел у симетричні і кососиметричні системи
числення
Переведення чисел у симетричні і кососиметричні системи числення виконують у три етапи. На першому етапі, використовуючи вже розглянуті раніше алгоритми, здійснюють переведення чисел із системи з основою q в зміщену систему з основою p. На другому етапі цифри зміщеної системи з основою p, що відсутні в симетричній або кососиметричній системі, представляють двома цифрами симетричної або кососиметричній системи з такою ж основою. На третьому етапі здійснюють підсумовування всіх допустимих для симетричної або кососиметричної системи цифр, отриманих на першому і другому етапах, з урахуванням їх ваг за правилами цих систем числення.
Приклад 2.11. Переведемо десяткове число X=2496 у канонічну п’ятіркову симетричну систему числення.
Розв’язання. Перший етап. Переведення у п’ятіркову зміщену систему здійснюємо за алгоритмом послідовного ділення на основу числення
Таким чином, у п’ятірковій зміщеній системі задане число буде представлено як 34441.
Другий етап. Оскільки допустимими для симетричної п’ятіркової системи є цифри {-2,-1,0,1,2}, то цифри 3 і 4 зміщеної системи представимо двома цифрами симетричної системи, а саме:
(тут ) 34441
Третій етап. Виконаємо підсумовування цифр симетричної системи, отриманих на першому і другому етапах, з урахуванням їх ваг.
Результатом переведення є число у п’ятірковій симетричній системі числення. Перевіримо правильність одержаного результату скориставшись методом безпосередньої заміни