Квадратична форма називається додатньо (від’ємно) визначеною, якщо для А(x, x) (А(x, x)) і додатньо (від’ємно) напіввизначеною (квазівизначеною), якщо А(x, x) (А(x, x) ).
Ясно, що додатньо визначена квадратична форма зводиться до суми квадратів з додатніми канонічними коефіцієнтами, додатньо напіввизначена форма – з невід’ємними коефіцієнтами (деякі з них можуть дорівнювати нулю).
Теорема(критерій Сильвестра).
Для того, щоб квадратична форма А(x, x) була додатньо визначеною, необхідно і достатньо, щоб всі кутові мінори матриці А=[aij] були додатніми.
Для того ж, щоб квадратична форма була від’ємно визначеною, необхідно і достатньо, щоб знаки кутових мінорів чергувались, причому .
Доведення..
а)Необхідність. Покажемо спочатку, що із умови знаковизначеності квадратичної форми А(x, x) випливає , і=1, 2,..., n.
Переконаємось, що припущення веде до протиріччя – при цьому припущенні існує ненульовий вектор х, для якого А(x, x), що суперечить знаковизноченості форми.
Нехай . Розглянемо наступну квадратну однорідну систему лінійних рівнянь:
.
Оскільки - визначник цієї системи, і =0, то записана система рівнянь має ненульові розв’язки (не всі хрівні нулю).Помножимо перше із рівнянь системи на , друге на , ..., останнє на і додамо отримані співвідношення. В результаті дістанемо рівність , ліва частина якої є значенням квадратичної форми А(x, x) для ненульового вектора х з координатами . Це значення рівне нулю, що суперечить знаковизначеності форми. Отже, , і=1,2,...,n.
Застосуємо метод Якобі зведення форми А(x, x) до суми квадратів. Якщо А(x, x) –додатньо визначена форма, то із формул для знаходження канонічних коефіцієнтів отримаємо ...,. Якщо ж А(x, x)– від’ємно визначена форма, то з тих же формул випливає, що знаки кутових мінорів чергуються, причому.
б) Достатність. Згідно умови теореми всі , і=1,2,...,n, тому, скориставшись методом Якобі, отримаємо у першому випадку додатньо, а в другому – від’ємно визначену квадратичну форму.