Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Інші види фінансових рент

Рис. 5.5. Постійна скінчена річна рента з платежами в середині періодів

 

На рис. 5.5 показано, що розмір періодичних платежів R = соnst, платежі в початковий (нульовий) та в останній (n-ний) момент часу не здійснюють, платежі надходять в середині відповідних періодів.

Порівнявши графіки виплат, наведені на рис. 5.1, 5.4 та 5.5, можна зробити висновки, що фактично виплату для рент з пла­тежами в середині періодів здійснюють на півперіоду раніше, ніж для звичайних рент та на півперіоду пізніше, ніж для авансо­вих рент.

Отже, за аналогією з рівнянням (5.11) для ренти з платежами в середині періодів можна записати таку формулу:

 

(5.17)

 

де S1/2 — нарощена сума ренти з платежами в середині періодів, Spost нарощена сума ренти постнумерандо.

Рівняння (5.17) дозволяє визначити майбутню вартість ануїте­ту з платежами в середині періодів за відомої майбутньої вартості звичайного ануїтету.

Для визначення теперішньої вартості ануїтету з платежами в се­редині періодів, за відомої теперішньої вартості звичайного ануїте­ту, за аналогією з (5.15), можна записати співвідношення (5.18):

 

(5.18)

 

Таким чином, для обчислення початкової та кінцевої вартості скінченої ренти з платежами в середині періодів, спочатку зазви­чай обчислюють вартісні характеристики для ідентичної ренти постнумерандо, а потім перемножують відповідні вартісні харак­теристики ренти постнумерандо на множник нарощування за по­ловину періоду.

Для оцінювання вартісних характеристик одразу для ренти з платежами в середині періодів необхідно скористатися формулою:

 

(5.19)

 

Рівняння (5.19) дозволяє визначити майбутню вартість ануїте­ту з платежами в середині періодів. Для оцінювання його теперіш­ньої вартості запишемо рівняння (5.20):

 

(5.20)

 

 

Вище було висвітлено основні види річних рент (ануї­тетів), які найбільш широко застосовують на практиці. Проте у загальному випадку будь-яка рента може передбачати р платежів за рік, при цьому проценти на них нараховують т разів на рік. Причому періодичність та кількість платежів р не обов'язково збігається з періодичністю та кількістю нарахувань процентів т.

Зрозуміло, що у цьому разі питання оцінювання теперішньої та майбутньої величин таких рент значно ускладнюється. Розгля­немо це питання на прикладі рент постнумерандо.

Нехай скінчена рента постнумерандо передбачає р платежів за рік, при цьому проценти, нараховують т разів на рік. Поди­вимось, як видозміняться канонічні рівняння (5.4) та (5.6) за­лежно від кількості платежів та періодичності нарахувань про­центів.

Розглянемо наступні співвідношення.

Загальний випадок — т ≠р

У цьому випадку для нарощеної суми маємо:

 

(5.21)

 

Знаючи нарощену величину такої ренти, можна знайти її тепе­рішню вартість з рівняння (5.22):

 

(5.22)

 

Розглянемо окремі випадки цієї ренти.

Річна рента (р = 1) з нарахуванням процентів т разів за рік.

Якщо проценти нараховують т разів на рік, а платежі річні, то нарощена сума дорівнює:

 

(5.23)

 

 

Теперішню величину такої ренти обчислюють за формулою (5.23).

р - термінова рента з нарахуванням процентів один раз за рік (т = 1)

Якщо платежі здійснюються декілька разів за рік, а проценти нараховують один раз за рік нарощена сума дорівнює:

 

(5.24)

 

Теперішню величину такої ренти розраховують за формулою (5.5).

р — термінова рента з т =р

Досить часто у фінансових обчисленнях припускають, що кіль­кість платежів за рік та кількість нарахувань процентів збігаються (тобто т=р).

Майбутня сума такої ренти дорівнює:

 

(5.25)

 

Теперішню величину цієї ренти обчислюють за формулою (5.23).

Підставивши вираз (5.25) у рівняння (5.22) отримаємо:

 

(5.25/)

Аналогічні рівняння можна вивести не лише для рент з платежами наприкінці періоду, а й для рент з платежами в довільний момент часу.

Повертаючись до класифікації, наведеної в табл. 2.1, підкреслимо, що уточнюючи ще ряд параметрів, окрім періодичності платежів та нарахування процентів, можна отримати зовсім інші типи рент.

Наприклад, було розглянуто лише постійні ренти, в яких ве­личини всіх членів ренти однакові. Зрозуміло, що існують і змінні ренти з різними розмірами платежів. Причому в деяких випадках члени такої ренти змінюються за певними закономірно­стями. Наприклад, виокремлюють змінні ренти з постійним аб­солютним приростом платежів (розміри членів ренти зміню­ються за арифметичною прогресією) та постійним відносним приростом платежів (за геометричною прогресією).

Крім того, було розглянуто лише дискретні ренти, за якими платежі надходять через фіксовані проміжки часу. Але інколи потік платежів розглядають як неперервний процес.

Найскладнішими в математичному плані є фінансові ренти, що описують неперервним змінним потоком платежів. На сьогодні, вони майже не застосовні на практиці, проте є окремим напрямом наукових досліджень.

У фінансових обчисленнях, які стосуються таких потоків пла­тежів, вважають, що коли потік неперервний, то розміри плате­жів у часі описуються функцією , а для нарахування про­центів використовують процентну ставку у вигляді сили росту .

Тоді нарощену суму неперервного змінного потоку платежів, відповідно до введених раніше позначень, визначають так:

 

(5.26)

 

Відповідно, теперішня вартість такого потоку дорівнює:

 

 

Необхідно зазначити, що оскільки через потоки платежів опи­суються будь-які фінансові розрахунки в економіці, то розмаїття схем та механізмів фінансових операцій зумовлює появу безлічі інших видів фінансових рент.

 

 


Читайте також:

  1. Амортизація як джерело фінансових ресурсів підприємств
  2. Аналіз доцільності фінансових інвестицій у корпоративні права.
  3. Аналіз рівня, динаміки та структури фінансових результатів підприємства
  4. Аналіз стратегічних альтернатив та визначення оптимальної стратегії формування фінансових ресурсів
  5. АНАЛІЗ ФІНАНСОВИХ ЗВІТІВ
  6. Аналіз фінансових інвестицій та їх ефективності.
  7. Аналіз фінансових коефіцієнтів.
  8. Аналіз фінансових результатів діяльності туристичних підприємств
  9. Аудит фінансових результатів роботи підприємства
  10. Аудиторські докази щодо тверджень керівництва у фінансових звітах отримуються безпосередньо в процесі проведення тестів контролю та процедур по суті.
  11. Банківська діяльність у сфері надання фінансових послуг
  12. Банківська діяльність у сфері надання фінансових послуг.




Переглядів: 740

<== попередня сторінка | наступна сторінка ==>
Річна рента з платежами в середині періодів | Застосування теорії рент у плануванні схем фінансово-кредитних розрахунків

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.018 сек.