Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Центр мас (інерції) системи матеріальних точок. Теорема про рух центру мас

Рівняння (1.60) формально подібно до рівняння руху однієї матеріальної точки, однак має інший зміст. Фактично це рівняння містить у собі n рівнянь руху матеріальних точок системи. Але рух усієї системи можна описати одним рівнянням, формально подібним до рівняння руху однієї матеріальної точки у тому випадку, якщо ввести поняття центра мас (або центра інерції) системи матеріальних точок.

Для того, щоб ввести поняття центра мас, розглянемо систему, що складається із двох матеріальних точок масами та (рис. 1.21). Рівняння руху матеріальних точок цієї системи мають вигляд:

(1.62)

Додавання лівих і правих частин системи (1.62) дає:

(1.63)

Враховуючи, що і , рівняння (1.64) перетворимо до вигляду:

, або:

. (1.65)

Це рівняння співпало б із рівнянням руху однієї уявної точки С (рис. 1.21), якби підібрати її масу так, щоб виконувалась умова m = m1 + m2 і положення у просторі, що задовольняло б умові: . Рівняння руху точки С можна записати, виходячи із аналогії із рівнянням (1.65):

. (1.66)

Рівняння (1.64) справедливо при умові, що радіус-вектор точки С визначається рівнянням:

, (1.67)

тобто точка С розміщена на прямій лінії, що з’єднує точки 1 та 2, і ділить цю пряму на відрізки, обернено пропорційні масам точок m1 і m2. Ці міркування можна поширити на систему, що складається із довільної кількості n матеріальних точок. Радіус-вектор точки С визначатиметься як:

(1.68)

де – маса системи матеріальних точок.

Точка С, радіус-вектор якої задовольняє рівняння (1.68), називається центром мас, або центром інерції системи матеріальних точок. У проекціях на відповідні осі можна записати:

(1.69)

Швидкість руху центра мас можна виразити як похідну по часу від радіус-вектора центра мас системи:

(1.70)

Відповідно прискорення центра мас системи визначається як похідна від швидкості центра мас системи по часу:

(1.71)

Із співвідношення (1.71) випливає рівняння руху центру мас:

(1.72)

де – векторна сума усіх зовнішніх сил, прикладених до усіх матеріальних точок системи. Вираз (1.72) виражає теорему про рух центра мас: центр мас системи матеріальних точок рухається так, як рухалася б одна матеріальна точка масою m, рівною масі системи, під дією результуючої сили , рівної сумі усіх зовнішніх сил, прикладених до усіх матеріальних точок системи.

Із рівняння (1.72) зокрема слідує, що якщо , то , тобто за відсутності зовнішніх сил центр системи матеріальних точок рухається прямолінійно і рівномірно або перебуває у спокої.

Розглянемо деякі особливості динаміки системи матеріальних точок:

1) можна довести, що положення центру мас у класичній механіці не залежить від вибору системи відліку;

2) імпульс центра мас

дорівнює векторній сумі імпульсів усіх матеріальних точок системи.

Система відліку, початок координат якої співпадає із центром мас системи, називається системою центру мас або Ц-системою. В системі центра мас , тому ; . Отже, . Таким чином, векторна сума імпульсів матеріальних точок системи відносно центру мас рівна нулю: . Перехід до системи центру мас інколи буває дуже зручним при розгляді, наприклад, процесів пружного зіткнення і розсіяння частинок. У цьому випадку аналіз зіткнення значно спрощується і отримані результати можна інтерпретувати геометрично з допомогою діаграм;

3) якщо гравітаційне поле Землі є однорідним, тобто прискорення вільного падіння усіх точок тіла однакове (), то центр мас тіла співпадає з центром тяжіння (ЦТ):

,

де .

4) поняття «центру мас» в релятивістській механіці не має змісту, оскільки при русі із швидкістю, близькою до швидкості світла у вакуумі, маса є функцією швидкості, і виконані вище перетворення (див. формулу 1.68, 1.70) не виконуються. Однак в механіці спеціальної теорії відносності використовується сам термін «система центру мас», під яким розуміють систему відліку, початок координат якої співпадає із точкою, відносно якої векторна сума імпульсів системи матеріальних точок рівна нулю: .

Як буде показано далі, положення центру мас визначає стійкість будівельних конструкцій, машин, кранів тощо до перекидання, що необхідно враховувати при їх проектуванні.


Читайте також:

  1. I. Органи і системи, що забезпечують функцію виділення
  2. I. Особливості аферентних і еферентних шляхів вегетативного і соматичного відділів нервової системи
  3. II. Анатомічний склад лімфатичної системи
  4. IV. Розподіл нервової системи
  5. IV. Система зв’язків всередині центральної нервової системи
  6. IV. Філогенез кровоносної системи
  7. POS-системи
  8. VI. Філогенез нервової системи
  9. А джерелами фінансування державні капітальні вкладення поділяються на централізовані та децентралізовані.
  10. А. Центрогенна ДН
  11. Автокореляційна характеристика системи
  12. АВТОМАТИЗОВАНІ СИСТЕМИ ДИСПЕТЧЕРСЬКОГО УПРАВЛІННЯ




Переглядів: 3070

<== попередня сторінка | наступна сторінка ==>
Закон збереження імпульсу | Рух тіл змінної маси

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.009 сек.