МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
||||||||||
Радіоактивність. Закони радіоактивного розпадуРадіоактивність – самовільне перетворення одного ядра в інше, яке супроводжується випромінюванням та вивільненням частинок. Радіоактивний розпад може супроводжуватись α, β або γ-випромінюванням. α-випромінювання – потік позитивно заряджених частинок (ядер гелію). Властивості: α-випромінювання має низьку проникну здатність та високу іонізуючу здатність. β-випромінювання – потік електронів та позитронів. Властивості: має більшу (у порівнянні з α-випромінюванням) проникну здатність, але меншу іонізуючу здатність. γ-випромінювання – потік фотонів, електромагнітне випромінювання з довжиною хвилі від 0,01 до 1 Аº. Властивості: серед усіх трьох випромінювань має найбільшу проникну здатність і найменшу іонізуючу. Радіоактивністю володіють елементи, що мають порядковий номер у періодичній системі, більший від 83. Радіоактивність існує штучна та природна. Штучна радіоактивність виникла в результаті штучної ядерної реакції. Природна радіоактивність зумовлена природою ядра. Період напіврозпаду (Т) – час, за який розпадається половина ядер (атомів) речовини. Стала розпаду (λ) показує, яка частина атомів розпадається за одиницю часу. Активність (А) показує кількість атомів (ядер) розпаду за одиницю часу: , де N – кількість ядер в даний момент часу. Нехай в момент часу розпадається N ядер, тоді за 1 с , а за час – . Знак «-» показує, що кількість ядер атомів зменшується. – закон радіоактивного розпаду в диференціальній формі При початкових умовах t = 0 (початковий момент часу): – закон радіоактивного розпаду в інтегральній формі, де N – кількість ядер, що не розпалися за час t; – початкова кількість ядер (рис.3.18.а). Знайдемо кількість елементів, що розпалися: Використаємо властивість періоду піврозпаду: якщо Т = t, тоді . ; – період напіврозпаду.
Отримаємо частинний випадок інтегральної формули закону радіоактивного розпаду: З виразу для періоду напіврозпаду отримаємо, що Підставимо цей вираз в закон радіоактивного розпаду: Скористаємося основною логарифмічною тотожністю: . Отримаємо, .
Звідси .
α-розпад . Як відомо, α-частинок в ядрі немає, але вони народжуються в результаті радіоактивного розпаду. Щоб вилетіти з ядра, α-частинці потрібно подолати потенціальний бар’єр. Досліди показують, що енергія α-частинок недостатня для того, щоб подолати цей бар’єр, тобто α-частинка не може покинути межі ядра (з точки зору класичної електродинаміки), але з точки зору квантової фізики існує ймовірність того, що α-частинка може покинути межі ядра навіть тоді, коли її енергія менша потенціального бар’єру. Це явище називається «тунельним ефектом». Саме ним і пояснюється народження α-частинок та виникнення α-розпаду. Ядро, випромінюючи α-частинки, перетворюється в інше ядро, яке називається дочірнім; а ядро, що розпадається, називається материнським. При радіоактивному розпаді виділяється енергія у вигляді кінетичної енергії тих частинок, які виникають у результаті розпаду: α-частинки та дочірнє ядро. Якщо материнське ядро до розпаду було у стані спокою, то після розпаду енергії α-частинок і дочірнього ядра обернено пропорційні їх масам. Це випливає із закону збереження імпульсу. Радіоактивне ядро випускає α-частинку, яка складається з двох нейтронів і двох протонів, тобто ядро атома гелію . При цьому баріонний заряд материнського ядра зменшується на чотири одиниці, а електричний – на дві одиниці. За цей вид розпаду відповідає сильна взаємодія. Енергетично α-розпад вигідний, оскільки енергія зв'язку дочірнього ядра менша, ніж у материнського. Заважає виходу зарядженої частинки кулонівський потенціальний бар'єр ядра, хоча квантова частинка вміє «просочуватися» через бар'єри. Якщо відомий коефіцієнт прозорості бар'єра D, можна визначити сталу розпаду , користуючись такими міркуваннями. Швидкість α-частинки масою m, енергією W дорівнює: . Кількість зіткнень частинки зі стінкою потенціального бар'єра в одиницю часу: , де 2R – діаметр ядра. Частка зіткнень, які закінчуються подоланням потенціального бар'єра, дорівнює D×n. Але це є ймовірність розпаду, яка дорівнює сталій розпаду . Коефіцієнт прозорості найпростішого прямокутного потенціального бар'єра: , звідки . Як випливає з формули, навіть невелика зміна енергії W α-частинки веде до величезної зміни і періоду піврозпаду. Зі зростанням енергії W від 2 до 9 МеВ період піврозпаду змінюється від років до с. Зауваження. Вихід складної частинки, утвореної з чотирьох нуклонів, виявляється найбільш імовірним, ніж вихід одного нуклона. Це наслідок насиченості ядерних сил. α-частинка як ціле замкнене утворення пов'язана слабше з іншими нуклонами, ніж окремий нуклон. Як показали досліди, енергія α-частинки, що вийшла з ядра, не може мати довільного значення. Існує дискретний ряд дозволених значень енергії, як і при випромінюванні фотонів. Дискретний енергетичний спектр α-частинок – це наслідок існування енергетичних рівнів у ядрі. Дочірнє ядро звичайно перебуває у збудженому стані і для переходу в основний стан випромінює жорстке короткохвильове електромагнітне випромінювання. Часто говорять, що ядро випускає γ-кванти, або γ-промені, або γ-фотони. β-розпад Як відомо, в ядрі електронів немає. При радіоактивному розпаді вилітають електрони, які народжуються внаслідок розпаду ядра. При β--розпаді в ядрі відбувається перетворення нейтрона в протон: ; . При β+-розпаді відбувається перетворення протона в нейтрон: ; . При поясненні β-розпаду вчені ще не знали про існування нейтрино і тому результати дослідів приводили до порушення закону збереження енергії, і тому в фізиці була висунута гіпотеза (Паулі), яка говорила, що при кожному β-розпаді вилітає не одна, а дві частинки. Вважали, що окрім електричної частинки, вилітає ще електронейтральна, яка мала дуже малу масу і спін її дорівнював . Цю частинку назвали нейтрино; так її назвав вчений Адерміні, який розробив теорію β-розпаду. При бета-розпаді баріонний заряд (кількість нуклонів) не змінюється, а електричний заряд змінюється на ±1. З ядра вилітає електрон, або позитрон, або відбувається захоплення протоном електрона власного атома, звичайно з К- оболонки. При β-розпаді перетворюється окремий нуклон. Тому розпади визначаються не кулонівськими і не ядерними, а тільки слабкими взаємодіями. Наведемо схеми перетворень для трьох видів - розпаду. 1. Електронний розпад чи -розпад: . Нейтрон перетворюється на протон, електрон і електронне антинейтрино. Протон залишається в ядрі, а електрон і електронне антинейтрино вилітають із ядра. 2. Позитронний розпад, або -розпад: . Протон перетворюється на нейтрон, позитрон і електронне нейтрино. Нейтрон залишається в ядрі, а позитрон і електронне нейтрино вилітають із ядра. 3. К- захоплення: . Протон ядра захоплює електрон із найближчої К – оболонки атома і перетворюється на нейтрон і електронне нейтрино. Із ядра вилітають тільки нейтрино. Взагалі взаємні перетворення нейтрона і протона можуть відбуватися і за межами ядра, що підтверджує незалежність таких перетворень від сильних взаємодій. Оскільки інтенсивність слабких взаємодій на двадцять порядків менша, ніж сильних, то й терміни життя b- активних ядер мають макроскопічну тривалість. Так, час життя вільного нейтрона становить 11,7 хв. На відміну від α-розпаду енергетичний спектр електронів або позитронів, які вилетіли з ядра ( -спектр), має неперервний характер. Це нібито не узгоджується з принципами квантування енергії в ядрі. На рис. 3.19 зображено такий спектр. На осі ординат відкладено кількість електронів , які мають енергію , а по осі абсцис – енергію . Бачимо, що електрон може мати енергію від нуля до деякого граничного значення . Існує також найбільш імовірне значення енергії, яке відповідає максимуму функції. Такий характер спектра легко пояснити, знаючи, що енергія розподіляється між електроном і нейтрино. У кожному окремому акті розпаду частка енергії кожної частинки, певна річ, випадкова, але при усередненні за великою кількістю розпадів виявляється стійка статистична закономірність. Кінець спектра при означає, що всю енергію отримав електрон, а на частку нейтрино вже нічого не залишилося. Ці пояснення вельми переконливі, і ми легко погоджуємося з ними. Проте В.Паулі, котрий у 1936 році вивчав експериментальний -спектр, якщо на той час про нейтрино ще нічого не було відомо. І наскільки ж він мав бути впевненим у тому, що ядро може віддавати енергію тільки квантами, щоб припустити існування невідомої частинки і передбачити її основні властивості, які дуже відрізняються від властивостей відомих елементарних частинок. Нейтрино не має електричного заряду, маса спокою нейтрино в десятки мільйонів разів менша за масу спокою електрона. Нейтрино не вступає ні в сильні, ні в електромагнітні взаємодії. І все ж нейтрино існує! Електронне нейтрино було знайдено експериментально Ф.Райнесом і К.Коуеном у 1953 році. γ-розпад Цей вид ядерного перетворення, мабуть, важко назвати ядерним розпадом, оскільки ні баріонний, ні електричний заряд ядра при цьому не змінюються. Просто збуджене ядро викидає залишкову енергію у вигляді жорсткого електромагнітного випромінювання. Переходячи в стаціонарний стан, ядро випромінює γ-промені. γ-випромінювання можливо пояснити з точки зору оболонкової моделі ядра, тобто коли ядро знаходиться в збудженому стані. Це означає, що нуклони не знаходяться на енергетично більш вигідних рівнях. Нуклони повинні перейти з якогось рівня m на енергетично більш вигідний рівень n. При цьому народжується γ-квант. Він має найбільшу серед усіх фотонів енергію, нейтральний заряд, а також найбільшу проникну здатність. Проте випромінювання має дискретний спектр. Випромінюються, по суті, частинки-фотони. Їх називають ядерними фотонами. Енергія ядерних фотонів у тисячі разів перевищує енергію фотонів, які випромінюються при переході електронів атома зі збуджених станів. Довжина хвилі де Бройля ядерних фотонів не перевищує м, тоді як довжина хвилі для фотонів оптичного діапазону становить м. Ядерний фотон, або -фотон, залишає ядро, але не обов'язково залишає межі атома. Іноді він поглинається одним з електронів атома. Таке явище називають внутрішньою конверсією. Електрон, отримавши таку велику енергію, вилітає з атома, і атом перетворюється на іон. Можливий і більш екзотичний варіант: перетворення -фотона на електрон-позитронну пару. У 1958 році було відкрито і зворотний процес – процес резонансного поглинання -квантів ядром атома. Цей ефект називається ефектом Месбауера. Буквально за кілька років було виконано величезний обсяг експериментальних робіт і доведено, якою потужною зброєю є цей ефект в багатьох дослідженнях.
Читайте також:
|
|||||||||||
|