Багатокрокове прогнозування з перенавчанням нейромережі на кожному кроці прогнозу
Швидкі неітераційні алгоритми навчання дозволяють запропонувати новий тип багатокрокового прогнозу, який може бути застосований при довготермінових прогнозах із збереженням задовільної точності прогнозування.
Аналогічно з попереднім алгоритмом прогнозування на входи мережі у режимі функціонування надходить остання реалізація навчальної множини x(tn-2), x(tn-1), x(tn). Прогнозоване значення виходу x*(tn+1) відкладається у векторі прогнозованих вихідних значень і в якості достовірного додається до реальних значень навчальної множини. Навчальна множина збільшується на одне часове вікно. Відбувається процес перенавчання мережі на збільшеній навчальній множині, під час якого визначаються нові вагові коефіцієнти k синаптичних зв'язків і поліномів передатних функцій нейронів (рис. 13).
Рис. 13. Послідовність використання нейромережі для задач багатокрокового прогнозування з перенавчанням
Реалізація x(tn-1), x(tn), x*(tn+1), як значення наступного вхідного вікна подається на входи мережі в режимі функціонування. Мережа продукує нове вихідне значення x*(tn+2), яке відповідно також відкладається у вектор продукованих виходів і долучається до реальних значень навчальної множини, з метою подальшого перенавчання мережі та встановлення поновлених коефіцієнтів поліномів передатних функцій і синаптичних зв'язків. Ітераційна процедура перенавчання поширюється до прогнозованого значення x*(tN).
Такий підхід дозволяє при великих інтервалах випередження усунути затухання прогностичних властивостей мережі за рахунок постійного коректування вагових коефіцієнтів синаптичних зв'язків.
Відзначимо, що алгоритм багатокрокового прогнозування з перенавчанням мережі для традиційних мереж прямого поширення з ітераційним навчанням є практично нездійсненним через великі часові затримки, необхідні на переналаштовування коефіцієнтів мережі.