МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Основні теоретичні відомостіМаятник Максвелла являє собою диск, напресований на циліндричний стрижень. На цей диск щільно накладається кільце. Маятник Максвелла підвішується на дві нитки, які прив’язані до циліндричного стрижня і можуть намотуватися на нього. На маятник діє сила тяжіння , прикладена до його центра мас і напрямлена вниз, а також сили натягу ниток напрямлені вгору. Ці сили створюють обертальний момент відносно осі маятника (рис. 7.3). Під дією прикладених сил маятник здійснює складний рух, який можна розкласти на два прості: обертальний рух навколо осі та поступальний рух маятника вниз і вгору. Ці рухи маятника здійснюються при розмотуванні або намотуванні ниток підвісу. Основний закон динаміки для поступального руху маятника матиме відповідно вигляд: , (8.1) де – маса маятника, яка дорівнює сумі мас стрижня , диска і кільця ( ) ; – сила натягу нитки (рис. 7.3.) , ( ). Основний закон динаміки для обертального руху буде: (8.2) де – кутове прискорення; – сумарний момент зовнішніх сил відносно осі , який в даному випадку дорівнює добутку сили натягу на плече ( ); I – момент інерції маятника., відносно осі складається з моментів інерції стержня Iст, диска Iд і кільця Iк: І = Іст + Ід + Ік (8.3)
Оскільки в обертальний рух маятник Максвела приводять (моменти) сили натягу ниток, то , де - радіус стрижня маятника Максвела (плече сили). Лінійне прискорення поступального руху маятника (осі ) дорівнює тангенціальному прискоренню точок, які розміщуються на бічній поверхні стрижня, тобто . У свою чергу тангенціальне прискорення пов’язане з кутовим прискоренням таким співвідношенням: (8.4) Тоді для руху маятника вниз будуть мати в скалярній формі такий вигляд співвідношення (8.5) Розв’язавши систему рівнянь (8.5) відносно значень і , дістанемо: (8.6) Можна вважати, що маятник Максвелла являє собою замкнену систему тіл, сили взаємодії між якими – потенціальні (консервативні). Для такої системи справедливий закон збереження механічної енергії: повна механічна енергія замкненої системи не змінюється з часом: Wповна = Wк + Wп= const (8.7) Отже, під час опускання маятника його потенціальна енергія перетворюється в кінетичну енергію поступального та обертального рухів: mgН= (8.8) де Н - відстань, на яку опустився маятник. У нижній точці траєкторії повністю розмотана нитка починає намотуватися на стрижень у протилежному напрямку, внаслідок чого маятник піднімається вгору, а його кінетична енергія перетворюється в потенціальну. Якщо тертя відсутнє, то він підніметься до початкової висоти і кінетична енергія повністю перетвориться в потенціальну. Якщо врахувати зв’язок між лінійною та кутовою швидкостями: ; (8.9) то для нижньої точки траєкторії співвідношенням mgh= буде мати вигляд: mgh=(I+mr ) (8.10) де r – радіус циліндричного стрижня. Кутову швидкість обертання маятника в нижній точці визначимо за часом його опускання = (8.11) Кутове прискорення буде (8.12) З урахуванням цього маємо: (8.13) (8.14) Таким чином, за відомими параметрами маятника Максвелла (масою m, моментом інерції I, радіусом стрижня r, довжиною нитки h та часом опускання t) можна незалежно розрахувати значення кінетичної і потенціальної енергії за формулами (8.13) і (8.14) у крайніх точках траєкторії та порівняти їх. Потрібне устаткування:Устаткування для вивчення руху маятника Максвелла; набір кілець; штангенциркуль.
Читайте також:
|
||||||||
|