Двійкові числа. Цифрові обчислювальні машини працюють з двійковими числами. Двійкова система зчислення або система з основою 2 використовує тільки цифри 0 і 1. Ці двійкові числа називаються бітами (від binary digit ). З фізичної точки зору в цифрових електронних системах біт 0 представлений напругою LOW (низьким), а біт 1 – напругою HIGH (високим).
Людська діяльність припускає використання десяткової системи зчислення. Десяткова система, або система із основою 10, містить 10 цифр (від 0 до 9).
Двійковій системі притаманна властивість врівноважування. Двійковому числу 10012 (читається: один, нуль, нуль, один) еквівалент 910 в десятковій. Біт одиниці двійкового числа називається молодшим бітом (МБ), біт вісімки – старшим бітом (СБ).
Як перетворити двійкове число 1011 0110 (тобто: один, нуль, один, один, нуль, один, один, нуль) в його десятковий еквівалент? Процедура перетворення виконується у відповідності з табл.1.1. Десяткові значення кожної позиції записані під кожним бітом, потім десяткові числа підсумовуються (128+32+16+4+2=182), що дає 182.
Таблиця 1.1 – Двійково-десяткові перетворення.
Степінь основи
27
26
25
24
23
22
21
20
Значення позицій
Двійкові
Десяткові
+
+
+
+
=
Зазвичай основа системи зчислення вказується індексами. Таким чином, число 1011 01102 є двійковим (тому що основа 2), а число 18210 – десятковим: 1011011012 = 18210.
Як перетворити десяткове 155 в його двійковий еквівалент? Процедура перетворення приведена на рисунку 1.1.
Десяткове спочатку ділиться на 2, що нам дає часткове 77 залишок 1. Цей залишок стає МБ двійкового числа і розміщується в цю позицію (див. рисунок 1.1.). Потім часткове (77) переміщується, як показує стрілка, і стає наступним, що буде ділитися. Потім кожне часткове поступово ділиться на 2 до тих пір, поки не отримаємо часткове, рівне 0, і залишок рівний 1 (див. останній рядок на рис. 1.1). Останній рядок дає нам результат 15510=100110112.