Якщо взяти два вирази 3(2х – 5) та (6х – 15), то при різних значеннях змінної х з множини значень R відповідні значення даних виразів будуть рівні. Наприклад:
х
3(2х – 5)
6х – 15
-3
-3
-15
-15
0,5
-12
-12
Можна показати, що при будь-яких значеннях х з множини R відповідні значення виразів рівні. Застосуємо розподільний закон множення відносно додавання та розкриємо дужки: 3(2х – 5) = 6х – 5, тобто бачимо, що перший вираз зводиться до другого. В таких випадках кажуть, що вирази тотожно рівні на множині дійсних чисел.
Означення. Два вирази називаються тотожно рівними, якщо при будь-яких значеннях змінної з області визначення виразів їх відповідні значення рівні.
Рівність, яка правильна при будь-яких значеннях змінної, називається тотожністю.
Тотожностями є всі правильні числові рівності. Прикладами тотожностей є закони додавання, множення, правила віднімання, ділення: тощо. Тотожностями є правила дій з нулем і одиницею: тощо. Прикладами тотожностей є відомі формули скороченого множення: тощо.
Означення. Тотожними перетвореннями виразів називається послідовний перехід від одного виразу до іншого, що тотожно дорівнює йому.
Прикладами тотожних перетворень є:
а) розклад многочлена на множники різними способами – це винесення за дужки спільного множника, яке здійснюється на основі розподільного закону множення відносно додавання; групування, яке здійснюється на основі переставного і сполучного законів додавання; застосування формул скороченого множення тощо;
б) зведення подібних;
в) виконання дій з дробами; скорочення дробів або зведення дробів до спільного знаменника тощо.
В початковій школі виконують тотожні перетворення тільки числових виразів. Їх теоретичною основою є застосування законів множення, додавання, різних правил: додавання суми до числа чи числа до суми; віднімання суми від числа чи числа від суми та інших.