Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Рівносильність нерівностей

Означення. Дві нерівності називаються рівносильними, якщо їх множини розв’язків рівні.

Наприклад, нерівності і рівносильні, бо їх множини розв’язків рівні і є числовим проміжком .

Теореми про рівносильність нерівностей схожі з теоремами про рівносильність рівнянь, і доведення їх аналогічне до доведення теореми 1 рівносильності рівнянь.

Теорема 3. Нехай нерівність f (х) > g (x) задана на множині Х і h (х) – вираз, який визначений на тій же множині Х. Тоді нерівність і дана нерівність f (х) > g (x) рівносильні.

Теорема 4. Нехай нерівність f (х) > g (x) задана на множині Х і h (х) – вираз, який визначений на тій же множині Х і для всіх значень х з множини Х . Тоді нерівність і дана нерівність рівносильні на множині Х.

Теорема 5. Нехай нерівність f (х) > g (x) задана на множині Х і h (х) – вираз, який визначений на тій же множині Х і для всіх значень х з множини Х . Тоді нерівність і дана нерівність рівносильні на множині Х.

При розв’язуванні нерівностей з однією змінною першого степеня використовують наслідки з теорем про рівносильність нерівностей.

Наслідки з теорем про рівносильність нерівностей

До теореми 3

1. Якщо до обох частин нерівності додати одне й те саме число, то дістанемо нерівність, рівносильну даній.

2. Якщо в нерівності перенести доданок з однієї частини в другу, змінивши його знак на протилежний, то дістанемо нерівність, рівносильну даній.

До теореми 4

Якщо обидві частини нерівності помножити (або поділити) на одне і те саме додатне число, то дістанемо нерівність, рівносильну даній.

До теореми 5

Якщо обидві частини нерівності помножити (або поділити) на одне і те саме від’ємне число і знак нерівності змінити на протилежний, то дістанемо нерівність, рівносильну даній.

Наприклад.

1. Розв’яжемо нерівність:

а) Перенесемо доданок 2х у ліву частину нерівності, а доданок 5 у праву, змінивши їх знаки на протилежні:

За наслідком 2 з теореми 3 дістанемо нерівність, рівносильну даній.

б) Виконаємо тотожне перетворення – зведемо подібні:

Дістали нерівність, рівносильну попередній, а отже і даній.

в) Поділимо ліву і праву частини нерівності на число 2:

За наслідком з теореми 4 дістанемо нерівність, рівносильну попередній, отже і даній.

Отже, розв’язком нерівності є проміжок

 
 

 


2. Розв’яжемо нерівність:

Розв’язання.

Отже, множиною розв’язків нерівності є проміжок

 
 


 

У початкових класах розглядаються лише найпростіші нерівності. Вони розв’язуються такими способами: методом підбору; на основі залежностей між компонентами та результатом дій; зведенням нерівності до рівності.

Наприклад. При яких значеннях букви а правильна нерівність .

Міркуємо так: зводимо до рівності, рівняння перетворюється у правильну рівність при . Щоб сума була менше 90, потрібно взяти (якщо один доданок сталий, а другий зменшити, то і сума зменшиться).

Отже, на множині цілих невід’ємних чисел множиною розв’язків нерівності є множина .

 


Читайте також:

  1. Еджескопія – відділ дактелоскопії , за яким здійсн криміналістичне дослідження нерівностей будови країв попелярних ліній на долонях поверхні рук і підошв ніг.
  2. Рівносильні нерівності. Теореми про рівносильність нерівностей.
  3. Рівносильні рівняння. Теореми про рівносильність рівнянь.
  4. Рівносильність рівнянь
  5. Системи та сукупності нерівностей з однією змінною та способи їх розв’язування. Нерівності та системи нерівностей з двома змінними, графічний спосіб їх розв’язування.
  6. ТМО вивчення нерівностей, що містять змінну.
  7. ТМО вивчення числових рівностей і нерівностей.
  8. Числові нерівності, властивості істинних числових нерівностей




Переглядів: 2004

<== попередня сторінка | наступна сторінка ==>
Нерівності з однією змінною | Функції, графіки та їх властивості

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.007 сек.