Задача наближення функції виникає, коли для функції, даної при дискретних значеннях аргументу у вигляді таблиці (ці значення називаються вузлами інтерполяції) необхідно знайти значення функції в проміжних крапках. Накладаючи вимогу, щоб наближена функція у вузлах співпадала з табличними значеннями (рис. 4.1), одержуємо задачу інтерполяції.
Рисунок 4.1 – Графік наближеної функції
Нехай в результаті спостережень за ходом деякого процесу побудована таблиця:
x
x0
x1
x2
…
xn
f(x)
f(x0)
f(x1)
f(x2)
…
f(xn)
Тобто, функція f(x) задана таблицею значень для кінцевої безлічі значень х .
Якщо необхідно знайти значення f(x) для проміжного значення аргументу, то будують функцію φ(x) , просту для обчислень і таку, що для заданих x0 , x1 , x2 , ... , xnприймає значення f(x0) , f(x1) , f(x2) , ... , f(xn) .
В інших точках відрізка [x0, xn] вважаємо, що φ(x) приблизно визначає функцію f(x) з тим чи іншим ступенем точності.
Найчастіше, функцію φ(x) представляють у вигляді алгебраїчного багаточлена деякого ступеня.
Найпростіша інтерполяція – це лінійна, тобто, коли невідому аналітичну залежність f(x) замінюють відрізками прямих, які проходять через відповідні вузли інтерполяції. В цьому випадку потрібно визначити якому відрізку належить надане х* і за формулою лінійної інтерполяції знаходять f(x*) . Якщо xi <= x* <= xi+1 , то відповідна пряма проходить через вузли (xi , f(xі)) , (xi+1 , f(xі+1)) :
(4.1)
Точність підрахунків в цьому випадку незначна, тому що враховується вплив тільки 2-ох вузлів інтерполяції. Частіше будують багаточлен Pn(x) ступеня n , що в (n+1) даних точках x0 , x1 , x2 , ... , xn. приймає дані значення y0 = f(x0) , y1 = f(x1) , … , yn = f(xn) , тобто
f(xі) = Pn(xі) , (і = 0, 1, 2, ... , n) .
Відзначимо, що двох різних інтерполяційних багаточленів одного і того же ступеня n існувати не може. Цим умовам задовольняє інтерполяційний багаточлен Лагранжа: