Розглянемо послідовність з загальним членом . Покажемо, що ця послідовність є збіжною. Для цього спочатку установимо, що вона зростаюча, а потім – що вона обмежена.
Згідно формули бінома Ньютона
Подамо цей вираз у наступному вигляді
(3)
Так само одержуємо
.
При виконується нерівність , тому , тобто послідовність зростаюча.
Оскільки кожний вираз, який стоїть у дужках у формулі (3) менший від одиниці і при , то
.
За формулою суми нескінченно спадної геометричної прогресії маємо
.
Отже, послідовність обмежена. Таким чином, послідовність із загальним членом збіжна. За означенням границю цієї послідовності позначають буквою , тобто