![]()
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів Контакти
Тлумачний словник |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Мета роботиЛабораторна робота № 6 вимірювання концентрації оксиду вуглЕцю (СО) у відпрацьованих газах автомобільного бензинового двигуна Вивчення і практичне освоєння вимірювання концентрації оксиду вуглецю (СО) у відпрацьованих газах автомобільного бензинового двигуна за допомогою газоаналізаторної апаратури.
6.2 Загальні відомості У ДВЗ джерелом шкідливих речовин є відпрацьовані і картерні гази, а також паливо. Вони утворюють понад 200 токсичних речовин (токсичними називають речовини, що шкідливо впливають на живі організми). Багато з них не впливають на людину та навколишнє середовище, оскільки вони утворюються у невеликих кількостях. Усереднені дані про склад токсичних домішок у відпрацьованих газах технічно-справних бензинових двигунів наведені у таблиці 6.1.
Таблиця 6.1 - Усереднені дані про склад токсичних домішок у відпрацьованих газах технічно-справних бензинових двигунів.
Аналіз даних таблиці 6.1 свідчить про те, що найбільшу частку шкідливих домішок у відпрацьованих газах, токсичну дію яких треба ураховувати, мають: оксид вуглецю СО, оксиди азоту NOх, вуглеводні сполуки CnHm, де n і m - середній вміст атомів вуглецю і водню в молекулі палива відповідно. Найбільша концентрація шкідливих домішок у відпрацьованих газах, таких, як СО, NOх, CnHm і т.п. утворюється при роботі двигуна на обертах холостого ходу, на перехідних режимах і форсованих режимах на збагачених сумішах. Таким чином контроль за токсичністю відпрацьованих газів необхідно проводити саме на цих режимах. Зменшити величину шкідливих викидів в атмосферу можна встановленням спеціальних пристроїв у вигляді фільтрів, нейтралізації токсичних речовин у відпрацьованих газах на виході в термічних, каталітичних чи адсорбційних нейтралізаторах і т.п. Другою мірою може бути: підігрівання впускного тракту, оптимізація конструкції камери згоряння, рециркуляція відпрацьованих газів на випуску, застосування електронних систем вприскування палива і керування двигунами, застосування принципово нових вирішень – перехід на малотоксичні газові, водневі палива. Але всі перераховані вище міри потребують значних витрат. Радикальною мірою може служити контроль за станом системи живлення і запалювання двигуна, його якісним регулюванням і усуненням несправностей, які виникають в процесі експлуатації. Діагностування шкідливих домішок у відпрацьованих газах з метою зниження їх концентрації регламентується рядом нормативних документів. В Україні наказом № 14 від 31.01.04р. Держспоживстандартом затверджено ДСТУ 4277:2004 “Норми і методи вимірювань вмісту оксиду вуглецю та вуглеводнів у відпрацьованих газах автомобілів з двигунами, що працюють на бензині або газовому паливі”. Вимоги цього стандарту щодо екологічних показників автомобілів, двигуни яких працюють на бензині, відповідають вимогам Директиви Європейського Союзу 96/96/ЄС “Про гармонізацію законів країн учасниць щодо випробування автомобілів та їх причепів на придатність до експлуатації”. Згідно цього стандарту вміст оксиду вуглецю та вуглеводнів у відпрацьованих газах автомобілів, не обладнаних системами нейтралізації відпрацьованих газів (далі – нейтралізатори), не повинен перевищувати меж, які наведені у табл. 6.2.
Таблиця 6.2 – Гранично допустимий вміст оксиду вуглецю та вуглеводнів у відпрацьованих газах автомобілів, не обладнаних нейтралізаторами.
*Для автомобілів, виготовлених до 1 жовтня 1986р., допустимий вміст оксиду вуглецю становить 4,5%. Примітка. Для автомобілів, які проходять обкатку (пробігом до 3 тис.км.), допустимий вміст вуглеводнів у відпрацьованих газах збільшується на 20% порівняно з даними табл. 6.2. Вміст оксиду вуглецю і вуглеводнів у відпрацьованих газах автомобілів, які працюють на бензині й обладнані нейтралізаторами не повинен перевищувати меж, які наведені у табл. 6.3.
Таблиця 6.3 – Гранично допустимий вміст оксиду вуглецю та вуглеводнів у відпрацьованих газах автомобілів, обладнаних нейтралізаторами.
Таким чином, ДСТУ приписує проводити перевірку на вміст шкідливих домішок у відпрацьованих газах оксиду вуглецю (СО) і вуглеводнів (СН) на режимах холостого ходу при двох частотах обертання колінчастого валу: при мінімально можливій і підвищеній. Величини цих частот обертання і відсоткового вмісту шкідливих викидів установлюються заводом-виробником і вони повинні бути вказані в технічних умовах і інструкціях по експлуатації автомобіля, але не перевищувати норм, запропонованих ГОСТ і іншими нормативними документами. Для визначення вмісту СО використовуються прилади, що визначають кількість теплоти від згоряння СО на каталітично активній платиновій спіралі. До об'єму газу, що відбирається для аналізу, у визначеному співвідношенні подається чисте атмосферне повітря. Гази, що відпрацювали, спалюють, нагріваючи платинову нитку. Підвищення їхньої температури в цей час за певних умов пропорційно вмісту СО у газах, що відпрацювали. До таких приладів відносяться: вітчизняний індикатор моделі І-СО, прилад «Елкон S-100» (Угорщина) і деякі інші газоаналізатори, вбудовані у двигун-тестори. Точність виміру в цих приладах недостатня для кваліфікованих досліджень токсичності газів, що відпрацювали. Їх можна використовувати тільки при регулюванні системи паливоподачі. У теперешній час найбільш поширені більш точні газоаналізатори, що працюють за принципом інфрачервоного випромінювання. Дія таких газоаналізаторів заснована на принципі виборчого поглинання інфрачервоних променів у визначених областях довжин хвиль (інфрачервоне випромінювання являє собою частину електромагнітного спектра в діапазоні довжин хвиль 2…8 мкм). СО поглинає інфрачервоні промені з довжиною хвиль 4,7 мкм, а СО2 - 4,3 мкм. На цьому принципі працюють газоаналізатори «Елкон S-105” (Угорщина), “Інфраліт-1100”, 121 ФА-01.
Принцип роботи газоаналізаторів. Принцип роботи газоаналізатора “Елкон-S-105” заснований на недісперсійній інфрачервоній адсорбції (рис. 6.1). Це прилад безупинної дії, який дозволяє контролювати утримання СО в газах, що відпрацювали, у дорожніх умовах. Діапазон виміру складає 0…8%, похибка - менше 0,5%. Прилад настроєний на діапазон адсорбції СО довжиною хвилі 4,66 мкм. По точності, надійності роботи і габаритним розмірам він відповідає міжнародним вимогам. В умовах автотранспортних підприємств токсичність газів, що відпрацювали, перевіряють також переносним приладом “Інфраліт-1100” (рис. 6.2). Газоаналізатор “Інфраліт-1100” працює на принципі поглинання різними газовими компонентами інфрачервоних випромінювань із визначеною довжиною хвилі. Принцип роботи газоаналізатора наступний. Два джерела (6) інфрачервоного випромінювання через параболічні лінзи й обтюратор (7) створюють пучок, що направляється в робочу камеру (5) і камеру порівняння (8), що заповнена повітрям, не поглинаючим інфрачервоне випромінювання. У робочій камері газ проходить під дією мембранного насоса (4) і поглинає з загального спектра інфрачервоне випромінювання з довжинами хвиль 4,7 мкм. У приймач випромінювання (9) надходить два потоки різної інтенсивності. Чутлива мембрана приймача, що розділяє його камери, випробує різницю тиску двох потоків випромінювань, прогинаючись у бік меншого тиску. Переміщення мембрани сприймається підсилювачем і далі передається в стрілочний (індикаторний) і записуючий прилади.
1 - стрілочний прилад; 2 - повітряний фільтр; 3 - ручка потенціометра занулення приладу; 4 - перемикач напруги живлення 6 або 12В; 5 -запобіжник; 6 - трубка підведення газів від випускної труби глушителя; 7 - зонд; 8 - газовий фільтр; 9 - акумуляторна батарея Рисунок 6.1 - Газоаналізатор «Елкон- S-105”
1 - газоодбірний зонд; 2 - відділювач конденсату; 3 - фільтр; 4 мембранний насос; 5 - робоча камера; 6 - джерело інфрачервоного випромінювання; 7 - обтюратор з електродвигуном; 8 - камера порівняння; 9 - приймач випромінювання; 10 - підсилювач; 11, 12 - відповідно стрілочний і реєструючий прилади Рисунок 6.2 - Газоаналізатор “Інфраліт-1100”
На рисунках 6.3 і 6.4 показані передня і задня панелі газоаналізатора 121 ФА-01 з розташуваними на них органами керування і контрольними приладами.
1 - кнопка вмикання живлення; 2 - кнопка вмикання насоса газоаналізатора; 3 - кнопка перемикання діапазонів виміру; 4 - ручка точної установки нуля; 5 - патенціометр грубого настроювання нуля; 6 - індикаторна лампочка вмикання мережі; 7 - показуючий прилад Рисунок 6.3 - Передня панель газоаналізатора 121 ФА-01
1 - вхідний і вихідний штуцери, запобіжники, клеми для підключення джерела живлення постійного струму 12В; 2 - роз’єм підключення зовнішнього вимірювального приладу; 3 - клема заземлення; 4 - кронштейн кріплення фільтра; 5 - кабель живлення від мережі перемінного струму 220В; 6 - кнопка перемикання роду живлення, яка при живленні від мережі 220В повинна бути віджата. Рисунок 6.4 - Задня панель газоаналізатора 121 ФА-01
Газ із випускної труби автомобіля (або іншого джерела) засмоктується в газозабірник, де попередньо охолоджується (температура газів, що відпрацювали, на виході може досягати 200оС) і надходить у фільтр. Газ засмоктується за допомогою діафрагменного насоса, встановленого в прилад. У результаті охолодження газу в забірнику утворюється конденсат, що разом із газом надходить у фільтр. Фільтр газоаналізатора складається з фільтра грубого і тонкого очищення і відстійника, де газ ще більше охолоджується з утворенням додаткового конденсату. Весь конденсат накопичується у відстійнику і періодично повинен вилучатися з нього. Далі, відпрацьовані гази, через фільтр грубого очищення, у якому затримуються частки сажі й інші великі компоненти, у тому числі і залишки конденсату, надходять у фільтр тонкого очищення, де затримуються більш м'які фракції. Після очищення суміш газів, що містить СО, надходить у вимірювальний перетворювач, де концентрація аналізованого компонента перетворюється в електричний сигнал, який обробляється в електронному блоці вторинного опрацювання інформації (ВОІ) і надходить на прилад (7) (рис. 6.3). У відпрацьованих газах міститься також багато різних вуглеводнів СН. Контроль утримання СН здійснюють за допомогою недисперсних інфрачервоних випромінювань. Кількість СН перераховують на легкий вуглеводень - n-гексан. Це найбільш простий спосіб. Він надійний у роботі і має достатній ступінь точності для практичних цілей. Є прилади, в одному з яких змонтовані пристрої для визначення СО і СН. До таких приладів можна віднести японські газоаналізатори «Рікен» Р1-503А, UREX-201 і ін. Газоаналізатор «Рікен» Р1-503А обладнаний двома шкалами. Шкала СО нижнього діапазону відповідає 0…2% вмісту СО у відпрацьованих газах, а високого 0…10%. Вуглеводні оцінюють по трьох шкалах: низький діапазон 0…500 млн-1, середній 0…2000 млн-1 і високий 0…5000 млн-1. Робота газоаналізатора UREX-201 заснована на інфрачервоному випромінюванні. Прилад має стрілочну індикацію з великогабаритною шкалою. Діапазон виміру СН - 0…800 ррм (низький діапазон) і 0…2000 ррм (високий діапазон); СО - 0…5%( низький діапазон) і 0…10% (високий діапазон).
6.3 Обладнання і прилади - діагностичний стенд двигун-тестер “Палтест-JT-251”; - газоаналізатори “Елкон-S-105”, 121 ФА-01,“Інфраліт-1100”; - двигун ВАЗ-2101; - плакати по конструкції і технічному обслуговуванню карбюраторних двигунів.
Читайте також:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|