МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Поняття про втрату стійкості при напруженнях, що перевищують границю пропорційності
Виведення формули Ейлера ґрунтується на застосуванні диференціального рівняння пружної лінії. Тому скористатися цією формулою можна лише тоді, коли справедливий закон Гука, тобто доки критичне напруження (напруження стискання, що відповідає критичній силі) не перевищує границі пропорційності: . (4.5) Виведемо формулу для критичного напруження σкр. Відповідно до виразів (4.5) та (4.4) . (4.6) Тут – квадрат найменшого з головних радіусів інерції стрижня; F = Fбр – площа брутто поперечного перерізу стрижня. Ввівши безрозмірну величину , (4.7) що називається гнучкістю стрижня (slenderness ration of a bar), остаточно знайдемо , (4.8) тобто критичне напруження стрижня залежить тільки від пружних властивостей матеріалу (модуля пружності Е) та гнучкості стрижня λ. Функціональна залежність (4.8) становить видозміну формули Ейлера. У системі координат σкр ≈ λ цю залежність можна подати у вигляді гіперболічної кривої, що зветься гіперболою Ейлера. Як приклад наведемо такий графік (рис. 4.4) для стрижня зі сталі марки Ст. 3, для якої модуль пружності Е = 2,1 ∙ 105 МПа, границя текучості σт = 240 МПа, а границя пропорційності σпц = 200 МПа. Графік показує, що в міру зростання гнучкості стрижня критичне напруження прямує до нуля, і навпаки, в міру наближення гнучкості стрижня до нуля критичне напруження прямує до нескінченності. Однак з умови (4.5) застосованості формули Ейлера відповідно до формули (4.8) маємо , і, отже, . (4.9) Це означає, що формула Ейлера стає непридатною при гнучкості стрижня, меншій за граничне значення λгр, яке залежить тільки від властивостей матеріалу, тобто в розглядуваному прикладі при λ < . Те саме можна дістати і графічно. Якщо на осі ординат (σкр) відкласти значення границі пропорційності (σпц = 200 МПа) і провести зі здобутої точки К пряму, паралельну осі абсцис, то вона в перетині з гіперболою Ейлера дасть точку М,абсциса якої і є λгр. Ліворуч від точки М гіперболу Ейлера зображено штриховою лінією, оскільки вона тут дає значення напружень вищі за границю пропорційності, тобто такі, що не відповідають умовам її застосування. Проте явище поздовжнього згинання продовжує існувати й за границею пружності. Дослідами встановлено, що дійсні критичні напруження для стрижнів середньої та малої гнучкості λ < λгр менші, ніж визначені за формулою Ейлера. Отже, в цьому разі формула Ейлера дає завищені значення критичної сили, тобто завжди переоцінює дійсну стійкість стрижня. Тому використання формули Ейлера для стрижнів, що втрачають стійкість за границею пружності, не тільки принципово неправильне, а й дуже небезпечне за своїми наслідками. Теоретичне розв'язання задачі про стійкість за границею пропорційності складне, тому зазвичай користуються емпіричними формулами, здобутими в результаті обробки багатьох дослідних даних. Ф. С. Ясинський зібрав та обробив великий дослідний матеріал щодо поздовжнього згинання стрижнів, у результаті чого склав таблицю критичних напружень залежно від гнучкості для низки матеріалів та запропонував просту емпіричну формулу для обчислення критичних напружень за границею пропорційності: . (4.10) Значення коефіцієнтів а та b для деяких матеріалів наведено в табл. Е.2 (додаток Е). Для чавуну користуються параболічною залежністю , (4.11) де с = 0,53. За цими даними для кожного матеріалу при 0 < λ < λгр можна побудувати графік залежності критичних напружень від гнучкості стрижня. За деяким значенням гнучкості (позначимо його λ0) напруження σкр, обчислене за формулою (4.10) або (4.11), стає таким, що дорівнює граничному напруженню при стисканні, а саме: для пластичних матеріалів для крихких матеріалів . (4.12) Стрижні, в яких λ < λ0, називають стрижнями малої гнучкості. Їх розраховують тільки на міцність. У розглядуваному прикладі (рис. 4.4) частина графіка критичних напружень за границею пропорційності (при 50 < λ < 100) має вигляд злегка нахиленої прямої SM, а частина (при 0 < λ < 50) – горизонтальної лінії NS. Отже, графік σкр = f(λ) для сталі Ст3 складається з трьох частин: гіперболи Ейлера при λ > 100, похилої прямої при 50 < λ < 100 та майже горизонтальної прямої при λ < 50. Похила пряма SM відповідає напруженням між границею пропорційності і границею текучості. Горизонтальна пряма SN відповідає напруженню, що дорівнює границі текучості.
Читайте також:
|
||||||||
|