МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Утворення вторинних метаболітівЗ відкриттям пеніциліну та інших антибіотиків виникла нова галузь промислової мікробіології. Мікроорганізми є продуцентами ряду вторинних метаболітів. Синтез антибіотиків Ще у XIX ст. було відомо, що між різними мікроорганізмами можуть існувати як симбіотичні (взаємовигідні), так і антагоністичні відносини. Антагонізм — взаємодія двох організмів, за якої один пригнічує життєдіяльність іншого. Поштовхом до з'ясування матеріальної основи антибіозу було спостереження А. Флемінга, який у 1928 р. виявив, що колонія гриба Репісіііит notatum пригнічувала ріст стафілококів. З тих пір було виявлено багато речовин з антибіотичною активністю. Антибіотики — це речовини біологічного походження, здатні навіть у низьких концентраціях пригнічувати ріст мікроорганізмів. Розрізняють речовини, що пригнічують ріст мікроорганізмів (бактеріостатичні, фунгістатичні), і такі, що їх вбивають (бактерицидні, фунгіцидні). Продуцентами антибіотиків є гриби з групи аспергілів, актиноміцети (стрептоміцети), а також деякі бактерії (бацили). Нині відомо понад 2000 антибіотиків, але тільки близько 50 з них використовуються як хіміотерапевтичні засоби. Яке значення мають антибіотики для організмів-продуцентів? До утворення антибіотиків ведуть біохімічні шляхи, які належать до вторинного метаболізму. Ці шляхи та ферменти, які їх забезпечують, не є необхідними для росту та виживання клітин. Генетичний апарат, необхідний для синтезу антибіотиків, у разі їх непотрібності для організму, став би баластом, і організм звільнився б від нього в процесі еволюції. Оскільки в природі зберігається лише те, що є додільним, потрібно бачити в антибіотиках речовини, які забезпечують їх продуцентам селективні переваги і в природних умовах існування (наприклад, перевага у конкуренції за один і той самий ростовий субстрат). Найважливіші антибіотики, використовувані в медицині. Перше місце все ще посідають пеніциліни (продуценти Репісillит notatum, Репісllит chrysogenum і деякі інші гриби), що належать до групи в-лактамних антибіотиків. Одержують також напівсинтетичні пеніциліни розщепленням природних пеніцилінів до 6-амінопеніциланової кислоти, до якої потім хімічним шляхом приєднують різні бокові групи — метицилін, карбеніцилін, ампіцилін, фене-тицилін та ін. Багато бактерій синтезують фермент пеніциліназу, який розщеплює в-лактамне кільце та інактивує пеніцилін. Проте ряд напівсинтетичних пеніцилінів не розкладаються пеніциліназами. Оскільки напівсинтетичні пеніциліни є стійкими до дії кислот, вони можуть вводитись в організм перорально. Цефалоспорини — продукти одного з видів гриба Cephalosporium. Цефалоспорин С має в-лактамове кільце і за своєю структурою схожий з пеніцилінами. Одержують напівсинтетичні цефалоспорини (цефалотин, цефалоридин), які за своєю дією схожі на похідні пеніциліну. Стрептоміцин був уперше виділений з культури Streptomyces griseus, але його синтезують і інші види Streptomyces. Успіх використання стрептоміцину зумовлений його дією на ряд кислотостійких і грамнегативних бактерій, нечутливих до пеніциліну. Проте стрептоміцин викликає у хворих різко виражені алергічні реакції. Цей антибіотик застосовується також у ветеринарії і для боротьби з захворюваннями рослин. Хлороміцетин (хлорамфенікол, левоміцетин) вперше виявлений у культурах Streptomyces uenezuelae, але його можна одержати і синтетичним шляхом. Він надзвичайно стабільний і діє на більшість грамнегативних бактерій, у тому числі на спірохети, рикетсії, а також на актиноміцети і великі віруси. Тетрацикліни також являють собою метаболіти стрепто-міцетів {Streptomyces aureofaciens). Хімічно тетрацикліни (хлортетрациклін, окситетрациклін і тетрациклін) близькі між собою і мають в основі структури нафтацен. Відзначаються широким спектром дії. До макролідів належать антибіотики різного походження з відносно великою молекулярною масою, для яких характерним є макроциклічне лактонове кільце (еритроміцин, карбоміцин А, пікроміцин). Актиноміцин був виділений у 1940 році. Це перший антибіотик, виявлений серед стрептоміцетів. Поліпептидні антибіотики (граміцидин S, поліміксини, бацитрацин та ін.) характеризуються високим спорідненням до плазматичної мембрани, тому є однаково токсичними як для про-, так і еукаріот. У клінічній практиці не застосовуються. Завдяки своїй здатності вибірково транспортувати іони через мембрану поліпептидні антибіотики використовують у дослідній роботі як іонофори. Валіноміцин, наприклад, полегшує транспортування калію через мембрану. Добавлення валіноміцину до клітинної суспензії призводить до втрати клітинами іонів калію. Мікробні екзополісахариди Практична значущість ЕПС зумовлена їх спроможністю в невисоких концентраціях істотно змінювати реологічні характеристики водних систем. Різноманітність фізико-хімічних властивостей мікробних полісахаридів зумовлює їх використання в нафтодобувній, харчовій, фармакологічній, хімічній промисловостях, сільському господарстві, медицині. Згідно з класифікацією англійського вченого І. Сазерленда мікробні ЕПС належать до п'яти груп. Перша група містить декстрани і споріднені полісахариди (левани, мутани). Вони складаються з моносахаридів одного типу, тобто є гомополісахаридами. Синтез цих ЕПС здійснюється на середовищах, що містять сахарозу як специфічний субстрат. За відсутності такого специфічного субстрату (крім сахарози, це можуть бути інші споріднені вуглеводи) утворення ЕПС не визначається. Продуцентами ЕПС першої групи є представники родів Streptococcus і Leuconostoc. Декстран (a-D-глюкан) продукується бактеріями Leuconostoc mesenteroides, Streptococcus bovis, Streptococcus ulridans. Декстран використовується як замінник плазми, а також для аналітичних досліджень у хімії та біології. Незважаючи на те що промисловий випуск декстрану існує з 40-х років XX ст., його частка на ринку мікробних ЕПС є відносно невисокою. Для утворення ЕПС другої групи також необхідна наявність специфічного вуглецевого субстрату, проте синтезовані ЕПС є гетерополісахаридами. Нині встановлено утворення такого ЕПС жовтозабарвленою псевдомонадою. До третьої групи належать гомополісахариди, що синтезуються на різних вуглецевих субстратах. Деякі з цих гомополісахаридів складаються лише з вуглеводів, наприклад бактеріальна целюлоза або пулулан (продуцент Aureobasidium pullulans), інші вміщують ацетильні групи (наприклад, ЕПС, синтезовані певними видами Agrobacterlum). Курдлан — в(1—3)-глюкан — синтезується бактеріями Alcaligenes faecalls і Agrobacterlum radiobacter. Цей полісахарид при нагріванні до 54 °С утворює гель, який, на відміну від агарових, зберігає свою структуру в широкому діапазоні температур (від 18 до 80 °С). Курдлан характеризується надзвичайною стійкістю до кислотної обробки. Завдяки цим властивостям курдлан використовують у харчовій промисловості, а також для приготування мікробіологічних середовищ. Четверта група мікробних ЕПС найчисленніша. її представники являють собою гетерополісахариди, які складаються із структур з повторюваними блоками. До цієї групи належить найбільш досліджений мікробний ЕПС — ксантан, а також промислово цінні ЕПС — гелан і емульсан. До складу ксантану (продуцент Xanthomonas campestris NRRL В-1459) входять залишки , D -глюкози, D-манози, D-глюкуронової кислоти у співвідношенні 2,8:2,0:2,0. Крім того, ЕПС містить близько 4,7 % , О -ацетильних груп і близько 3 % залишків піровиноградної кислоти, зв'язаних із залишками глюкозив бокових ланцюгах у вигляді циклічного кеталю. Ксантан вперше був описаний у 60-х роках XX ст. В Інституті мікробіології і вірусології НАН України селекціоновано штам Xanthomonas campestris pv. campestris 8162, який синтезує біополімер, аналогічний ксантану. Розчинам ксантану притаманна висока в'язкість за низьких концентрацій, яка залишається постійною в широкому діапазоні рН і не залежить від температури та наявності солей у розчині. Основні характеристики ксантану уможливлюють його використання в нафтодобуванні, а також у виготовленні харчових продуктів. Новим полісахаридом з унікальними властивостями є етаполан (розробка Інституту мікробіології і вірусологи НАН України).Комплексний полісахаридний препарат етаполан, синтезований штамом бактерій Acinetobacter sp. 12S, складається з нейтрального і двох кислих ЕПС, один з яких є ацильованим. Нейтральний ЕПС є мінорним компонентом. Ацильований і неацильований полісахариди ідентичні за молярним співвідношенням D-глюкози, D-манози, О-галактози, L-рамнози, D-глюкуронової і піровиноградної кислот (3:2:1:1:1:1) і структурою повторюваної одиниці вуглеводного ланцюга. Різниця між цими ЕПС полягає в тому, що ацильований полісахарид вміщує жирні кислоти (С12-С18). Реологічні властивості розчинів етаполану (здатність до емульгування, підвищення в'язкості в присутності одно- і двовалентних катіонів, при зниженні рН, в області низьких швидкостей зсуву, у системі Си2+-гліцин) визначаються співвідношенням у його складі ацильованого і неацильованого компонентів, а також вмістом жирних кислот в ацильованому полісахариді. Етаполан є полісахаридом багатофункціонального призначення і може бути використаний у нафтодобувній, харчовій, хімічній промисловостях як загущувальний, стабілізувальний, емульгувальний та суспендувальний агент. На основі етаполану розроблено спосіб ізоляції припливу пластових вод, який дає можливість при застосуванні 1 т етаполану видобути додатково до 240 т нафти та знизити її обводнення з 84 до 15 %. З використанням етаполану як головної складової частини розроблені технології виготовлення косметичних кремів за загальною назвою "Екол", технічного мийного засобу "БІМС-1". Завдяки спроможності адсорбувати та виводити з організму солі важких металів, етаполан може входити до рецептури хлібопродуктів, рекомендованих для профілактичного харчування. Гелан — гетерополісахарид, синтезований Pseudomonas elodea ATCC 31461. Він складається з тетрасахаридних повторюваних одиниць, що містять залишки глюкози, рамнози, глюкуронової кислоти і О-ацетильні групи. Гелан існує у вигляді трьох форм — нативній, низькоацетильованій і низькоацетильо-ваній освітленій. Низькоацетильований гелан одержують нагріванням нативного гелану за рН 10. Після охолодження гелан утворює тверді гелі, стійкість яких залежить від концентрації гелану і наявності в розчині солей. Гелан за торговою назвою "Гельрит" використовується як гелеутворювальний агент для приготування мікробіологічних середовищ. У порівнянні з агаром "Гельрит" має такі переваги: стабільність під час багаторазового автоклавування; інертність до більшості добавок, які є компонентами біологічних ростових середовищ; стійкість до ферментативної деградації; більш висока прозорість; нижча токсичність щодо чутливих мікроорганізмів. Висока температура плавлення геланових гелів дає можливість використовувати цей ЕПС у харчових продуктах, які піддаються тепловій обробці. Емульсан є мікробним ЕПС, який одержують у промисловому масштабі на основі нехарчової сировини — етанолу. Емульсан складається з N- і О-ацильованих залишків , D -галактозаміну, , D глюкози і аміноуронової кислоти. О-ацильна частина емуль-сану вміщує 5-19 % залишків жирних кислот. Вміст білка в емуль-сані становить 5-15 % . Розчинам емульсану притаманні емуль-гувальні властивості, що зумовило його використання в нафтовій промисловості для підвищення нафтовидобутку. До п'ятої групи мікробних ЕПС належить бактеріальний альгінат. Цей гетерополісахарид складається з мономерів двох типів: D-мануронової і L-гулуронової кислот. На відміну від ЕПС четвертої групи, в альгінаті немає повторюваних одиниць. Продуцентами альгінату є Pseudomonas aeruginosa iAzotobacter vinelandii. Бактеріальний альгінат відрізняється від альгінату з морських водоростей наявністю О-ацетильних груп, приєднаних до D-мануронової кислоти. Мікробні альгінати використовуються в харчовій промисловості як замінники водоростевих альгінатів. Лектини мікробного походження Лектини — це вуглеводзв'язувальні білки, які характеризуються певною вуглеводною специфічністю. Здатність взаємодіяти з певним вуглеводом — фундаментальна характеристика лектинів. Лектини використовуються як лікарські препарати, діагностикуми та аналітичні реагенти. Найбільш вивченими біологічними реакціями, що відбуваються за участю лектинів, є такі:аглютинація еритроцитів та інших типів клітин;адгезивна активність;мітогенна" стимуляція лімфоцитів '",фагоцитарна активність;ферментативна активність і токсичність щодо еукаріотичних клітин. До недавнього часу джерелом одержання лектинів були рослини та тканини тварин. Проте навіть серед них існує дефіцит лектинів з рідкісною вуглеводною специфічністю (щодо фуко-зи, уронових і сіалових кислот). Сіалові кислоти (N-ацетилнейрамінова та N-гліколілнейрамінова кислоти) можна уявити як продукт конденсації N-ацетилглюкозаміну з піровиноградною кислотою. Сіалові кислоти не зустрічаються у вільному вигляді, а входять до складу глікопротеїнів, глікокон'югатів біологічних рідин, є складовою поверхні еукаріотичних клітин. Технологія одержання позаклітинних сіалоспецифічних бактеріальних лектинів (80-ті роки XX ст.) є розробкою Інституту мікробіології і вірусології НАН України. Продуцентами таких унікальних лектинів є представники роду бацил (Bacillus subtilis). Слід зазначити, що серед сапрофітних бактерій здатність до синтезу лектинів була виявлена вперше. Сіалоспецифічні бацилярні лектини за хімічною природою є глікопротеїнами, які містять до 10 % вуглеводів. Вони є гетерогенними за молекулярною масою: у складі очищених лектинів виявлені компоненти з молекулярною масою від 10 000 до 70 000. Молекулярна маса неочищених лектинів не перевищує 15 000-19 000. Бактеріальні лектини можуть бути внутрішньоклітинними, асоційованими з поверхнею клітин і позаклітинними. Найбільший інтерес для біотехнології викликають позаклітинні лектини, які містяться в культуральній рідині, оскільки виділення таких лектинів є простішим, ніж клітинних. Вміст лектинів в культуральній рідині є невисоким і, як правило, не перевищує 100 мг/л. Поверхнево-активні речовини мікробного походження Поверхнево-активні речовини (ПАР) — це сполуки, які здатні знижувати поверхневий натяг на межі розподілу фаз. Такі речовини, завдяки силам міжмолекулярної взаємодії, можуть концентруватися (адсорбуватися) на межі розподілу фаз, знижуючи величини поверхневого натягу. ПАР поділяються на молекулярно-розчинні, які утворюють істинні розчини, та колоїдні {міцелярно-розчинні). Основні характеристики ПАР такі:1) критична концентрація міцелоутворення (ККМ). ККМ визначається як концентрація ПАР, за якої в його розчині утворюються міцели, що перебувають у рівновазі з молекулами чи іонами. На практиці ККМ визначається як максимальна концентрація істинно розчинного ПАР, яка може бути отримана в даних умовах;2) величина гідрофільно-ліпофільного балансу (ГЛБ). ГЛБ визначається за 20-бальною шкалою і показує співвідношення гідрофільної та гідрофобної частин у молекулі ПАР. Чим вище значення ГЛБ, тим гідрофільнішою є сполука. ПАР мікробного походження називаються бію- ПА Р, біосурфактантами. Розробляти їх почали у 70-х роках XX ст., тобто, як і мікробні лектини, вони є відносно новим продуктом біотехнології. Субстратами для синтезу ПАР є переважно вуглеводні (н-алкани) — нерозчинні у воді сполуки, і у зв'язку з цим синтез ПАР мікроорганізмами можна розглядати як життєво важливу функцію, а саме — емульгування важкодоступних субстратів і переведення у форму, доступну для засвоєння. З такої точки зору біо-ПАР можна розглядати як первинні метаболіти. Проте, крім вуглеводнів, як субстрати для синтезу ПАР можуть бути використані і водорозчинні сполуки (глюкоза, етанол). У таких випадках утворення ПАР не є життєво необхідною функцією, і їх можна розглядати як вторинні метаболіти. Біо-ПАР є міцелярно-розчинними сполуками, тобто складаються з гідрофобної та гідрофільної частин. ПАР на основі значення ККМ можна поділити на три групи:1) ПАР, для яких ККМ перевищує 7 г/л. Таким ПАР не притаманні мийні властивості;2) типові мийні засоби, емульгатори. Значення ККМ становить 0,2-7,0 г/л;3) ПАР, слабкорозчинні у воді і добре розчинні у вуглеводневих середовищах. ККМ не перевищує 0,2 г/л. Слід зазначити, що дистильована вода має поверхневий натяг 73 мН/м. Ефективні біо-ПАР знижують це значення до 29-32 мН/м, маючи при цьому низькі значення ККМ. За хімічною природою біо-ПАР поділяються на п'ять груп (класифікація німецького вченого Ф. Вагнера, який є провідним спеціалістом у галузі біотехнології мікробних ПАР): 1) гліколіпіди; 2) ліпопедтиди (ліпопротеїни); 3) ліпополісахариди; 4) жирні кислоти та їх похідні; 5) фосфоліпіди. Продуцентами ПАР можуть бути бактерії, дріжджі, гриби та мікроводорості. Найвідомішими з мікробних ПАР є гліколіпіди (продуцентами є артробактерії, псевдомонади синтезують ПАР, який називається "рамноліпід Р-1 дріжджі родів Candida та Torulopsis). Серед ліпопротеїнів найбільш відомими є бацилярні ПАР — сурфактин, ліхенізин, серед ліпополісахаридів — емульсан. За класифікацією ізраїльського вченого Е. Розенберга(1999 р.) біосурфактанти поділяються на низько- та високомолекулярні. До низькомолекулярних належать гліколіпіди (трегалозоліпіди, софороліпіди, рамноліпіди) та ліпопептиди (сурфактин, поліміксин, граміцидин S). Високомолекулярні біосурфактанти — це полісахариди, білки, ліпополісахариди, ліпопротеїни або комплекси цих сполук. Низькомолекулярні ПАР здатні знижувати поверхневий натяг на межі розподілу фаз, а високомолекулярні є ефективними стабілізаторами емульсій типу "масло у воді", тобто вони є емульгаторами.
Читайте також:
|
||||||||
|