![]()
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Векторні характеристикимеханічного руху– переміщення, шлях, швидкіст та прискоренняРозглянемо різні способи визначення положення точки. Перший - векторний спосіб опису руху. У деяких задачах цей спосіб є найбільш раціональним. За цим способом положення точки у просторі визначається радіусом-вектором
Залежність радіус-вектора точки від часу називається кінематичним рівнянням руху. Лінія, яку описує кінець радіус-вектора разом із матеріальною точкою у просторі, називається траєкторією руху. Залежно від форми траєкторії розрізняють прямолінійний та криволінійний рух. Зауважимо, що форма траєкторії руху точки істотно залежить від вибору системи відліку. Наприклад, у системі відліку, пов’язаній із Сонцем, траєкторії руху планет мають форму еліпсів; у системі відліку, пов’язаній із Землею, їхні траєкторії ускладнюються і нагадують петлеподібні рухи. Точка пропелера рухомого літака з погляду пілота перебуває в коловому русі; в системі відліку, пов’язаній з Землею, її траєкторія має гвинтоподібну форму. До вибору системи відліку треба підходити з урахуванням простоти і зручності опису в ній руху матеріальної точки. Сумарна довжина елементів траєкторії, пройдена точкою за заданий проміжок часу, називається шляхом ΔS. Рух точки за час
Найважливішою кінематичною характеристикою руху є швидкість. На практиці в описах рухів часто задовольняються середньою швидкістю, що дорівнює шляху, пройденому за одиницю часу, тобто:
Середня швидкість не дає чіткої інформації про рух тіла, а тому для точного опису руху вводиться поняття миттєвої швидкості. Миттєвою швидкістю називається векторна величина, що визначається рівністю
Оскільки рух тіла можна уявити як сукупність миттєвих перебувань його в послідовних точках траєкторії, то миттєва швидкість характеризує швидкість тіла в кожний момент часу або в кожній точці його траєкторії. Таким чином, миттєва швидкість – це похідна від радіус-вектора по часу. Одиницею вимірювання швидкості в СІ є метр за секунду (м/с); на практиці широко користуються кілометром за годину (км/год), у морській справі - вузлом (1 вузол = 1 морська миля/год = 1,853 км/год), у реактивній авіації числом М (1 М ≈ 1200 км/год). Із визначення випливає, що швидкість
де s – шлях, пройдений вздовж траєкторії. Таким чином, модуль миттєвої швидкості рівний першій похідній шляху по часу. У змінному русі швидкість може змінюватися і за значенням, і за напрямом. Повну зміну швидкості за час Δt знаходять за векторною різницею (рис. 1.4, а): Для оцінювання зміни швидкості в часі введено фізичну величину, що називається прискоренням. У певний момент часу або в заданій точці траєкторії прискорення є границею відношення вектора зміни швидкості
Таким чином, прискорення є першою похідною від швидкості тіла за часом, або друга похідна від радіус-вектора за часом Про напрямок вектора Отже, знаючи кінематичне рівняння руху, можна простим диференціюванням за часом знайти швидкість і прискорення в будь-який момент часу (так звана пряма задача кінематики). Навпаки, знаючи прискорення точки, а також початкові умови, тобто положення
Другий - координатний спосіб опису руху Якщо з тілом відліку жорстоко пов’язати яку-небудь координатну систему (наприклад, декартову), то положення точки в будь-який момент часу визначається трьома її координатами: x, y, z. Проектуючи радіус-вектор на координатні осі, отримаємо три залежності координат точки від часу
які є кінематичними рівняннями руху в координатній формі. За цими функціями для будь-якого моменту часу можна обчислити координати точки і знайти її положення. Рівняння (1.8) по суті є рівнянням траєкторії у параметричній формі. Щоб знайти рівняння траєкторії у явному вигляді, треба у системі (1.8) виключити час (тобто знайти зв’язок між координатами в довільний момент часу). Між векторним та координатним способами опису руху точки існує безпосередній зв’язок, а саме: - числові значення проекцій радіуса-вектора рухомої точки на координатні осі системи з тим самим початком відліку дорівнюють координатам точки, тобто:
де – траєкторією руху точки є годограф радіуса-вектора (крива, яку описує кінець вектора на рисунку 1.4, а). Рівняння (1.8) є рівнянням годографа; – вектор переміщення виражається через відповідні зміни координат рухомої точки, тобто:
Як було сказано вище, при Вектори швидкості та прискорення можуть бути вираженими у проекціях на координатні осі:
де проекції швидкості і прискорення точки на координатні осі знаходять так:
а модулі векторів знаходять за формулою:
Елементарний пройдений шлях при координатному заданні руху визначається: або
Звідси увесь шлях знайдемо шляхом інтегрування:
де константа С знаходиться з початкових умов. Таким чином, у кінематиці розв’язують задачі двох типів: на знаходження прискорення, коли відомо функції Задачі першого типу розв’язують методом диференціювання, другого – методом інтегрування. Наприклад, для випадку рівномірно прискореного руху, що відбувається в напрямі осі Ох, (
звідки інтегруванням знаходимо відомі вирази для швидкості та координати:
де
Отже, для розв’язання кінематичних задач, окрім прискорення, мають бути задані початкові умови, тобто координати початкового положення точки ( Розглянемо більш детально напрям вектора прискорення. Як випливає із (1.5) прискорення – це вектор, який за напрямом збігається з вектором У випадку криволінійного руху швидкість може змінюватись не лише за величиною, але й за напрямком (рис. 1.6). Розкладемо вектор приросту швидкості так:
Вектор
Модуль тангенціального прискорення визначається:
Якщо Другий доданок у формулі (1.21) називається нормальним прискоренням, яке характеризує зміну швидкості за напрямком (рис. 1.6) і визначається за формулою:
Знайдемо модуль нормального прискорення
Формула (1.26) визначає модуль нормального прискорення. Встановимо напрям вектора Повне прискорення
Тангенціальне і нормальне прискорення можуть бути використані для класифікації різних рухів, наприклад: 1) 2) 3) Читайте також:
|
||||||||
|