МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||||||||||||||||||
Концепція інтерполяції та екстраполяціїІнтерполяція та екстраполяція Обробка емпіричних даних В цьому розділі розглянемо тільки основні напрями обробки даних: інтерполяцію, екстраполяцію, апроксимацію, які є базою для вирішення інших задач обробки табличних даних, наприклад, задач згладжування, чисельних методів інтеграції і т.д. Основна задача інтерполяції – знаходження значень таблично заданої функції в тих точках всередині даного інтервалу, де вона не задана. Приклад. Залежність якості зору підлітка від тривалості щодобового перебування за комп’ютером (дані отримані шляхом опитування) задана у таблиці:
Приклад задачі інтерполяції – встановити, якою буде якість зору, якщо підліток щодобово сидітиме за комп’ютером 2 години, 1,5 годин, 3 години тощо? Екстраполяція – це знаходження значень такої функції в точках за межами заданого інтервалу. Приклад задачі екстраполяції – встановити, якою буде якість зору, якщо підліток щодобово сидітиме за комп’ютером 4,3 години, 4,5 години, 0,5 години тощо? В обох випадках початкові табличні дані можуть бути отримані експериментально (тоді проміжні дані принципово відсутні), або розрахунковим шляхом по складній залежності (проміжні дані отримати складно або дорого, але можливо). Рішення задач інтерполяції і екстраполяції забезпечується побудовою інтерполяційної функції , яка приблизно замінює початкову таблично задану функцію , і проходить через задані точки – вузли інтерполяції, тобто . За допомогою цієї функції можна приблизно визначити значення початкової функції у будь-якій точці. Процеси побудови інтерполяційної та екстраполяційної функції тотожні. Якщо інтерполяційна функція проходить через все вузлові точки, то така інтерполяція називається глобальною; якщо інтерполяційна функція будується окремо для різних частин заданого інтервалу, то – локальною інтерполяцією. Для вирішення задачі інтерполяції необхідно розглянути три проблеми: - вибір інтерполяційної функції ; - оцінка похибки інтерполяції ; - розміщення вузлів інтерполяції для забезпечення найбільшої можливої точності відновлення початкової функції . Вибір інтерполяційної функції в загальному випадку є досить складною і важливою задачею, особливо якщо пам’ятати, що через задані точки можна провести будь-яку кількість функцій (рис. 5.1).
Рис. 5.1 - Ілюстрація інтерполяції
Проте, найбільше застосування як інтерполяційна функція отримав поліном вигляду (5.1) Всі інтерполяційні функції у вигляді поліномів дають одні і ті ж результати, але з різними витратами. Це пояснюється тим, що поліном -ого степеня, що містить параметр (коефіцієнт), і проходить через усі задані точки, єдиний. Крім того, поліном можна представити як усічений ряд Тейлора, в який розклали початкову функцію. Це, мабуть, одна з головних переваг полінома як інтерполяційної функції, оскільки такий підхід дозволяє оцінити точність усікання. Коефіцієнти полінома -ого степеня визначаються шляхом розв’язування системи рівнянь , складених для вузлових точок. Проте цей спосіб не найефективніший. Для деяких видів полінома коефіцієнти можна визначити аналітичним шляхом, наприклад для многочленів Лагранжа і Ньютона. Що стосується вибору вузлів інтерполяції, то вони, як правило, розміщуються рівномірно на відрізку інтерполяції, хоча в деяких випадках для підвищення точності вибираються спеціальним чином. Спочатку розглянемо деякі види локальної інтерполяції, а саме: лінійну, квадратичну і сплайн-інтерполяцію. Читайте також:
|
||||||||||||||||||||||||
|