Опукле програмування. Необхідні та достатні умови існування сідлової точки. Теорема Куна-Такера.
Попит на продукцію, що виготовляється на двох видах обладнання, становить 120 одиниць. Собівартість, тис. грн., виробництва одиниці продукції на обладнанні кожної групи залежить від обсягу такого виробництва — відповідно і — та подається у вигляді для першої групи: ; для другої групи: .
Знайти оптимальний план виробництва продукції на кожній групі обладнання, який за умови задоволення попиту потребує найменших витрат, пов'язаних із собівартістю продукції.
Розв'язування. Математична модель задачі:
за умов
Згідно з методом множників Лагранжа складемо функцію Лагранжа:
Прирівнявши до нуля частинні похідні цієї функції за невідомими параметрами і , дістанемо систему рівнянь:
Розв'язавши цю систему, знайдемо:
Отже, на першій групі обладнання необхідно випускати 66,5, а на другій 53,5 одиниць продукції. При цьому мінімальні витрати, тис. грн., становитимуть: