Метод рекурентних співвідношень. Використання принципу Беллмана і алгоритму Джонсона.
Фірма планує нарощувати виробничі потужності на чотирьох підприємствах, маючи для цього 4 млн грн. Для кожного з підприємств розроблено інвестиційні проекти, які відбивають прогнозовані сумарні витрати С та доходи D, пов'язані з реалізацією кожного проекту. Зміст цих проектів ілюструє таблиця:
Проєект
Підприємство
Перший проект передбачає відмовитися від розширення підприємства, а тому має нульові витрати і доходи. Розробити план І інвестування виділених коштів у зазначені підприємства так, щоб одержати максимальний прибуток.
Розв'язування. Спрощеним і найменш ефективним способом розв'язування таких задач є перебір усіх можливих варіантів. Проте на практиці їх так багато, що проаналізувати всі і вибрати серед них найефективніший неможливо. Головними недоліками такого способу розв'язування є великий обсяг обчислень, відсутність апріорної інформації про неприпустимі розв'язки, а також немо жливість скористатися проміжними результатами аналізу для відкидання неоптимальних комбінацій проектів.
Розв'яжемо цю задачу за алгоритмом (методом) зворотного прогону. Кроками задачі вважатимемо кожне з чотирьох підпри ємств, оскільки для кожного з них маємо вибрати оптимальний інвестиційний проект за обмежених грошових ресурсів.
Зауважимо, що в цьому разі нединамічний процес розглядаємо як динамічний, аби скористатися методами динамічного програ мування для знаходження оптимального розв'язку. Зв'язок між зазначеними кроками забезпечується обмеженнями на загальний обсяг виділених коштів — 4 млн грн.
Змінні задачі візьмемо так, щоб послідовно керувати процесом розподілу коштів:
— обсяг капіталовкладень, виділених на кроках 1—4;
— те саме на кроках 2—4;
— те саме на кроках 3 і 4;
— те саме на кроці 4.
— обсяги інвестицій на г'-му підприємстві .
— оптимальні обсяги інвестицій на і- му підприємстві.
Рекурентне співвідношення для зворотного прогону від кроку 4-го до 1-го (від четвертого підприємства до першого) подається у вигляді:
де — сумарна ефективність інвестицій з і- го кроку до останнього.
Тут , оскільки п'ятого підприємства не існує. Виконаємо поетапні розрахунки за цією моделлю.