Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Гармонійний аналіз

Проаналізуємо вплив властивостей вікна на ефективність виявлення слабої спектральної лінії у присутності інтенсивної близько розташованої лінії. Якщо обидві спектральні лінії потрапляють в біни ДПФ, то кожна з них окремо може бути ідентифікована за допомогою прямокутного вікна. Ніяких взаємних перешкод при цьому не виникає. Щоб показати це розглянемо сигнал, що має дві спектральні складові з частотами 10fs/N i 16fs/N, що відповідають десятому і шістнадцятому бінам ДПФ, із амплітудами 1.0 і 0.01 (різниця рівнів 40 дБ).

Дещо змінимо наш сигнал так, щоб більш інтенсивна спектральна лінія потрапила між двома бінами ДПФ, тобто буде тепер мати частоту 10.5fs/N. Тоді структура бічних пелюстків повністю поглине головний пелюсток слабкого сигналу. Це і не дивно, оскільки відомо, що при використанні прямокутного вікна амплітуда бічних пелюстків на відстані 5.5 бін від центру всього на 25 дБ нижче точки максимуму. Тому другий сигнал (на відстані 5.5 бін від першого) не можна розпізнати, оскільки він більш ніж на 26 дБ нижчий найвищої точки, і, відповідно, повністю замаскований бічним пелюстком (26 дБ складаються з рівня бічного пелюстка, рівного 25 дБ за мінусом втрат при перетворенні, рівних 3.9 дБ плюс 3.0 дБ для надійного розпізнання). Відмітимо також асиметричність спектру відносно головної пелюстки з центром на 10.5 бін. Це результат когерентного підсумовування пелюстків пари ядер, які знаходяться на частотах ±10.5 бін.

Тепер для розпізнання слабкого сигналу застосуємо інші вікна і подивимось, наскільки вони ефективні.

Для деяких видів вікон найгірший прояв сигналів спостерігається у тому випадку, коли найбільший сигнал має частоту 10.0, а не 10.5 бін.

Отже, ми розглянули ряд класичних вікон і ряд вікон, сконструйованих відповідно з деякими критеріями оптимальності. Зокрема, була досліджена ефективність різних вікон при рішенні задач виділення тонів з широкосмугового шуму і розпізнавання тонів в присутності близьких по частоті завад більшої інтенсивності. Було показано, що при використанні ДПФ в якості детектора енергії гармонік максимальні втрати, обумовлені використанням вікон, не можуть бути нижчі 3.0 дБ і для хороших вікон не перевищують 3.75 дБ. Таким чином, вибір конкретного вікна не відіграє суттєвої ролі при зміні енергії спектральних гармонік з допомогою ДПФ. Ми дійшли висновку, що адекватним показником якості вікна є різниця між еквівалентною шумовою смугою і смугою по рівню 3.0 дБ, нормована на ширину смуги по рівню 3.0 дБ. У хороших вікон (див. рис. 12) це відношення знаходиться в межах від 4.0 до 5.5%. Повний діапазон можливих змін цього параметра для вікон, перерахований в табл.1, складає від 3.2 до 22.9%.

Правильний вибір вікна особливо важливий для розпізнання з допомогою ДПФ окремих тонів в сигналі, що містить декілька гармонік. Для того, щоб динамічний діапазон розпізнаних сигналів був максимальний, перетворення вікна повинно мати вузький головний пелюсток і дуже низький рівень бічних пелюстків. Ми показали, що більшість класичних вікон різною мірою відповідають цьому критерію, хоча деякі з них, по суті, зовсім незадовільні Виявилось що при розпізнанні близьких, але відмінних по амплітуді тонів найкращі результати досягаються при використанні оптимальних вікон (Кайзера-Бесселя, Дольфа-Чебишева, Барсилона-Темеша), а також вікон Блекмана-Херріса. Для одного й того ж динамічного діапазону розпізнаних сигналів характеристики трьох оптимальних вікон і вікна Блекмана-Херріса в цілому схожі, проте вікна Блекмана-Херріса і Кайзера-Бесселя мають деякі переваги над іншими. Відмітимо, що кращим слід назвати вікно Дольфа-Чебишева, однак через когерентне підсумовування його бічних пелюстків, які мають постійний рівень, воно не підтверджує свої високі характеристики при розпізнанні декількох сигналів різної частоти. Крім того, структура бічних пелюстків вікна Дольфа-Чебишева надто чутлива до помилок при обрахунку коефіцієнтів, що може вплинути на його характеристики при обрахунку ДПФ на ЕОМ, працюючих з фіксованою комою. Тому, кращими слід визнати вікна Блекмана-Херріса та Кайзера-Бесселя. Для багатьох практичних прикладів можна рекомендувати 4-членне вікно Блекмана-Херріса, воно задається малою кількістю легко обчислювальних коефіцієнтів, та можливістю застосування при виконанні спектрального згортання після обрахунку ДПФ. Серед причин вибору вікна Кайзера-Бесселя – легкість обрахунку коефіцієнтів і можливість зменшення рівнобічних пелюсток за рахунок збільшення добутку тривалості на смугу частот.

Особливу увагу в роботі було приділено на постійну помилку при використанні вікон для спектральної згортки. Ця помилка полягає в пропущенні почергових знаків підрахунків спектрального вікна. Поява цих знаків пов'язана із зсувом початку вікна в часових проміжках.

Ми також вияснили і пояснили джерело помилкових суджень щодо парності вікон, які використовуються при ДПФ.

Нарешті, слід відмітити, що всі висновки про характеристики вікон при спектральному аналізі можна розповсюдити на випадок застосування функцій затінення при опрацюванні просторово дискретизованих даних з допомогою антенних решіток, в тому числі і на задачу формування вузької діаграми направленості методом ШПФ.


Читайте також:

  1. ABC-XYZ аналіз
  2. II. Багатофакторний дискримінантний аналіз.
  3. SWOT-аналіз у туризмі
  4. SWOT-аналіз.
  5. Tема 4. Фації та формації в історико-геологічному аналізі
  6. V. Нюховий аналізатор
  7. АВС (XYZ)-аналіз
  8. Автомати­зовані інформаційні систе­ми для техніч­ного аналізу товар­них, фондових та валют­них ринків.
  9. Алгоритм однофакторного дисперсійного аналізу за Фішером. Приклад
  10. Альтернативна вартість та її використання у проектному аналізі
  11. Аналіз активів банку
  12. Аналіз альтернативних рішень




Переглядів: 891

<== попередня сторінка | наступна сторінка ==>
Класичні вікна | Особливості діагностики та контролю процесорів та систем опрацювання сигналів та зображень

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.013 сек.