МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Метод заміни площин проекційРозв’язання метричних задач можна звести до чотирьох основних типів: 1) перетворення прямої загального положення в пряму рівня; 2) перетворення прямої загального положення в проекціювальну; 3) перетворення площини загального положення в проекціювальну; перетворення площини загального положення в площину рівня. Найбільш поширені методи, що використовуються для цього – метод заміни площин проекцій та метод плоско-паралельного переміщення. Метод заміни площин проекцій полягає в тому, що вводиться допоміжна площина проекцій, яка перпендикулярна тільки до однієї з площин проекцій (горизонтальної Π1, фронтальної Π2, профільної Π3) (рис. 4.1, 4.2).
Рисунок 4.1 – Система основних та додаткових площин проекцій: Π4 – додаткова площина проекцій, що перпендикулярна тільки до Π1
Для переведення відрізка прямої із загального положення в положення рівня для визначення, наприклад, натуральної довжини, необхідно ввести додаткову площину паралельно одній з проекцій відрізка (рис. 4.3, 4.4).
a
б
Рисунок 4.2 – Утворення плоскої моделі систем площин проекцій: а – проміжний етап трансформації; б – плоска модель, що утворена в результаті трансформації
Рисунок 4.3 – Введення додаткової площини проекцій для визначення довжини відрізка загального положення
Рисунок 4.4 – Визначення довжини відрізка за умови задання АВ (А1В1, А2В2)
Для того, щоб перетворити пряму загального положення в проекціювальне положення необхідно ввести допоміжну площину перпендикулярно до проекції відрізка, яка є його натуральною величиною (рис.4.5, 4.6). Якщо пряма займає загальне положення, то переведення в проекціювальне положення відбувається в два етапи: спочатку в пряму рівня, а потім в проекціювальну пряму.
Рисунок 4.5 – Перетворення прямої рівня в проекціювальну пряму (наочне зображення)
Рисунок 4.6 – Перетворення прямої рівня в проекціювальну пряму (комплексне креслення)
Для переведення площини із загального положення в проекціювальне та в площину рівня необхідно застосувати такий алгоритм (рис.4.7): 1) вводимо горизонталь або фронталь; 2) вводимо допоміжну площину проекцій перпендикулярно до горизонтальної проекції горизонталі; 3) переводимо площину в проекціювальне положення; 4) вводимо нову допоміжну площину паралельно площині в проекціювальному положенні; 5) переводимо площину в натуральну величину. Розглянемо геометричні підстави для розв’язання деяких метричних задач.
Рисунок 4.7 – Перетворення проекціювальної площини в площину рівня
Для визначення відстані між двома паралельними прямими необхідно перевести обидві прямі в проекціювальне положення (рис. 4.8). Якщо прямі займають загальне положення, то необхідно провести два послідовних перетворення: спочатку ввести додаткову площину для переведення прямих в натуральну величину, а потім ввести додаткову площину перпендикулярно до отриманих проекцій прямих.
Рисунок 4.8 – Визначення відстані між двома паралельними прямими
Рисунок 4.9 – Визначення відстані між двома мимобіжними прямими
Для визначення відстані між двома мимобіжними прямими необхідно знайти найкоротшу відстань. Для цього необхідно виконати перетворення таким чином, щоб одна з прямих зайняла проекціювальне положення, тобто спроекціювалася в точку. Перпендикуляр з цієї точки визначає шукану відстань (рис.4.9). Якщо обидві прямі початково займають загальне положення, то перетворення відбувається в два етапи: 1) вводиться додаткова площина проекцій таким чином, щоб одна з прямих спроекціювалась в натуральну величину; 2) вводиться додаткова площина перпендикулярно до отриманої натуральної величини. Для визначення відстані між точкою та площиною необхідно перетворити площину в проекціювальне положення та опустити перпендикуляр з отриманої проекції точки на пряму, що є проекцією площини (рис.4.10). Якщо площина займає загальне положення, то потрібно спочатку перевести задану площину в проекціювальне положення (рис.4.7).
Рисунок 4.10 – Визначення відстані між точкою та площиною Для визначення величини двогранного кута між площинами необхідно ввести додаткову площину перпендикулярно до ребра, при якому визначається кут, тобто перевести вказане ребро в проекціювальне положення. При цьому кожна площина спроекціюється в пряму (рис.4.11). Якщо ребро при двогранному куті займає загальне положення, то потрібно спочатку перевести його в натуральну величину, а вже потім – в точку.
Рисунок 4.11 – Визначення величини двогранного кута між площинами
Читайте також:
|
||||||||
|