![]()
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
||||||||||||||||||||||||||||
Форми запису задач ЛПРозглянемо тепер конкретну задачу розподілу ресурсів. Приклад 1.1.Ювелірна майстерня виготовляє прикраси двох видів Таблиця 1.1
Потрібно так організувати виробництво прикрас, щоб прибуток від їх реалізації був максимальним. Розв’язок. Складемо математичну модель задачі. Припустимо, що для отримання найбільшого прибутку майстерня виготовить х1 виробів виду А1 і
Вартість реалізованих виробів виразимо цільовою функцією Таким чином, економічна задача в математичній формі формулюється так: знайти такі значення змінних Розглядувана нами задача (приклад 1.1) є так званою задачею ЛП (ЗЛП). (До ЗЛП відносять такі, в яких всі функції В ній, як зазначалося вище, потрібно відшукати значення змінних Проте в деяких задачах значення невідомих х1 і х2 повинні задовольняти лише деяку систему лінійних рівнянь, в інших – систему лінійних рівнянь і нерівностей, а також не обов’язково повинні бути невід’ємними. Поряд із задачами максимізації розглядають і задачі мінімізації. В залежності від виду обмежень і критерію оптимальності розрізняють наступні форми запису ЗЛП: a) загальна форма; б) симетрична форма; в) канонічна форма. Визначення 1.1. Загальною ЗЛП називають задачу, в якій потрібно знайти найбільше (найменше) значення цільової функції при обмеженнях
де Визначення 1.2. ЗЛП в симетричній формі запису називають задачу, в якій потрібно знайти найбільше значення функції при обмеженнях
Визначення 1.3. ЗЛП в канонічній формі запису називають задачу, в якій потрібно знайти найбільше значення функції при обмеженнях
З’ясуємо тепер питання про взаємозв’язок між різними формами ЗЛП. Насамперед покажемо, що канонічну задачу можна перевести в симетричну і навпаки. Справді, рівняння Тому, якщо кожне рівняння канонічної задачі замінити вище наведеною системою нерівностей, то отримуємо ЗЛП в симетричній формі. З другого боку, нерівність
Отже, якщо кожну нерівність в системі обмежень симетричної задачі замінити рівносильним їй рівнянням, то симетрична задача набуде вигляду канонічної. Симетрична і канонічна форми запису задачі є окремими випадками загальної задачі. Можна показати, що загальна задача може бути представлена у вигляді симетричної, а отже і канонічної форм. При необхідності задачу максимізації можна замінити задачею мінімізації і навпаки. Рис. 1.1 Зауваження 1.1. Як відомо, задача знаходження екстремальних точок функції розв’язується методами диференціального числення, які дозволяють визначати тільки такі екстремальні точки, які знаходяться всередині розглядуваної області, а не на її границі. В ЗЛП оптимальні значення цільової функції досягаються завжди на границі многокутника розв’язків. Тому для дослідження таких задач потрібно використовувати спеціальні математичні методи. Читайте також:
|
|||||||||||||||||||||||||||||
|