Припустимо, що попит на товар на інтервалі часу є випадковим і заданий рядом розподілу ймовірностей , де імовірність попиту на k одиниць товару. Витрати на зберігання одиниці товару в одиницю часу дорівнюють , нестача одиниці товару призводить до збитків у розмірі .
Розглянемо наступний приклад. Станція технічного обслуговування автомобілів має склад деталей. Деякі дорогокоштуючі деталі завжди повинні знаходитись на складі і видаватись за вимогою клієнтів, оскільки не можна допустити затримки у ремонті автомобілів. Який запас s цих деталей повинна мати станція технічного обслуговування на складі, щоб мати мінімум витрат, пов’язаних із зберіганням і незадоволеним попитом (втрата клієнта або термінова закупівля деталей за завищеними цінами тощо).
Позначимо через проміжок часу між послідовними моментами поповнення запасу. У випадку коли запас менше ніж попит , інтервал буде складатись із двох підінтервалів і , де – час, коли запас є, – коли запас відсутній. Припускаючи, що зміна запасу може відбуватись лінійно, будемо мати два випадки:
1. При середній запас на проміжку часу дорівнює
2. При середній запас на проміжку і середня нестача запасу на проміжку рівні
Математичне сподівання сумарних витрат дорівнює
(3.21)
Мінімум функції G(s) досягається у точці , для якої виконуються нерівності
(3.22)
де
,
Функція Р(s) за означенням дорівнює Як легко помітити, означає, що і відповідають оптимуму, а означає, що оптимуму відповідають і . Порівняння і L(s) зразу дає і
Приклад 3.5. Деталі, які зберігаються на складі, витрачаються рівномірно протягом дня. Витрати на зберігання однієї деталі на складі складають грн., а штраф за дефіцит деталі обходиться у грн. для спрощення обчислень покладемо Розподіл імовірностей попиту на деталі заданий у таблиці
Визначимо необхідний оптимальний щоденний запас деталей на складі s, щоб можливі витрати на зберігання запасу і збитки від дефіциту були б мінімальні.