Однорідні системи лінійних алгебраїчних рівнянь, фундаментальна система рішень
Система лінійних алгебраїчних рівнянь називається однорідною, якщо всі її праві частини дорівнюють нулю, тобто
(1)
Система (1) завжди сумісна (оскільки розширена матриця одержується із матриці коефіцієнтів шляхом додавання нульового стовпця, що на ранг не впливає).
Якщо ранг матриці коефіцієнтів r дорівнює кількості невідомих n, то система (1) має тільки тривіальний розв¢язок:
. (2)
Якщо ж < , то система має нескінченну множину розв¢язків. Щоб їх знайти, записуємо еквівалентну систему системі (1). А вже для еквівалентної системи застосовуємо один із вищезгаданих методів розв¢язування. Знаходимо загальний розв¢язок. Якщо ж потрібно знайти якийсь частинний розв¢язок, то довільним невідомим надаємо фіксовані значення.