Нехай функція визначена, строго монотонна й неперервна на деякому проміжку , і нехай множина − множина значень. Тоді на множині обернена функція однозначна, строго монотонна та неперервна.
Доведення. Нехай для визначеності функція на множині зростаюча, тобто для довільних , що задовольняють умову , виконується нерівність .
Однозначність оберненої функції випливає з того, що, оскільки зростаюча на , справедлива нерівність при . Отже, кожному відповідає єдине значення .
Покажемо, що обернена функція на множині зростаюча. Дійсно, якщо , то , оскільки за умови виконувалася б умова , що суперечить допущенню .
Установимо тепер, що функція на множині неперервна. Для цього спочатку доведемо наступну лему.
Лема. Якщо множина значень монотонно зростаючої (спадної) функції , визначеної на деякій множині , знаходиться в деякому проміжку , який вона заповнює весь, то функція в проміжку неперервна.
Щоб це довести, візьмемо точку , котра не є його правим кінцем, і покажемо, що в цій точці функція неперервна справа. Точка належить проміжку і не є його кінцем тому, що є значення такі, що і їм відповідають у значення . Нехай довільне, але настільки мале число, щоб значення також належало проміжку . Оскільки за припущенням , то існує таке значення , що , причому ( оскільки при і ). Покладемо , тобто . Якщо тепер , тобто , то або .
Це і означає, що . Тобто функція неперервна в точці справа.
Аналогічно можна встановити неперервність функції у точці зліва, якщо не є лівим кінцем проміжку . Звідси в сукупності буде випливати твердження, що розглядаємо.
Перейдемо до доведення неперервності функції . Оскільки ця функція, як уже встановлено, монотонна і її значення, згідно з умовою, заповнюють увесь проміжок , то відповідно до леми функція неперервна.
ТЕМА 5. ДИФЕРЕНЦІАЛЬНЕ ЧИСЛЕННЯ ФУНКЦІЇ ОДНІЄЇ ЗМІННОЇ