МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||||||||||||||
Інтервальні оцінки для генеральних середньої та часткиІнтервальною оцінкою (абонадійним,абодовірчим інтервалом)параметра генеральної сукупності називається такий інтервал , який із заданою надійністю (абонадійною,абодовірчою імовірністю) γ накриває параметр , що оцінюється. При цьому , , де – точкова оцінка (або вибіркове значення) параметра , величина δ знаходиться за нижченаведеними формулами і визначає точність інтервальної оцінки: чим менше δ, тим вища точність. У статистиці величина δ називається граничною помилкою і обчислюється за формулою: δ=t* μ, де величина t називається довірчим числом (або коефіцієнтом довіри), а μ – середньою (абостандартною) помилкою. Довірче число t=tγ (n) знаходиться за таблицями критичних точок розподілу Стьюдента для двосторонньої критичної області в залежності від надійності γ і обсягу вибірки п (див. додаток 3, число степенів вільності k=n–1, рівень значущості α=1–γ). Так, наприклад, t0,95(10)=2,26. Якщо п>30, то прийнято вважати, що розподіл Стьюдента з достатньою для практичних потреб точністю співпадає з нормальним розподілом і тоді число t=tγ можна знаходити за таблицями значень інтегральної функції Лапласа Ф(х) (див. додаток 5) із умови: Ф(tγ )=γ/2. Так, наприклад, t0,95=1,96. Крім того, число tγ можна знаходити за таблицею додатку 3, поклавши . Середні помилки μ для інтервальних оцінок генеральної середньої та генеральної частки р знаходяться за формулами, наведеними в таблиці 2.1: Таблиця 2.1 Середні помилки інтервальних оцінок параметрів тар
Позначення: – вибіркове середнє квадратичне відхилення, яке обчислюється за формулою (1.7), наведеною в л. р. № 1 для відповідного варіаційного ряду: з. в. р., д. в. р. чи і. в. р.; – виправлене середнє квадратичне відхилення; – вибіркова частка варіант, що задовольняють задану умову; l – число варіант, що задовольняють задану умову; N – обсяг генеральної сукупності. Точковимиоцінками генеральних середньої та частки р є відповідно вибіркові середня та частка w; при цьому обчислюється за формулами (1.1) – (1.3), наведеними в л. р. № 1 для відповідного варіаційного ряду: з. в. р., д. в. р. чи і. в. р. Таким чином, надійні інтервали для генеральних середньої та частки мають такий вид: – для повторної вибірки: , якщо п>30; (2.1) , якщо п≤30; (2.2) . (2.3) – для безповторної вибірки: , якщо п>30; (2.4) , якщо п≤30; (2.5) . (2.6) Очевидно, якщо обсяг вибірки п набагато менший за обсяг генеральної сукупності N (n<<N), то n/N ≈ 0 і формули (2.1) – (2.3) майже збігаються з формулами (2.4) – (2.6). Тому у статистичній практиці прийнято вважати, що якщо n/N < 0,05, то надійні інтервали можна знаходити за більш простими формулами (2.1) – (2.3) незалежно від схеми відбору. Слід зауважити, що формули для μх та μw виведено в припущенні відповідно нормального та біноміального розподілів генеральної сукупності, проте на практиці вони використовуються незалежно від виду розподілу останньої. Читайте також:
|
||||||||||||||||||||
|