Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Контакти
 


Тлумачний словник
Авто
Автоматизація
Архітектура
Астрономія
Аудит
Біологія
Будівництво
Бухгалтерія
Винахідництво
Виробництво
Військова справа
Генетика
Географія
Геологія
Господарство
Держава
Дім
Екологія
Економетрика
Економіка
Електроніка
Журналістика та ЗМІ
Зв'язок
Іноземні мови
Інформатика
Історія
Комп'ютери
Креслення
Кулінарія
Культура
Лексикологія
Література
Логіка
Маркетинг
Математика
Машинобудування
Медицина
Менеджмент
Метали і Зварювання
Механіка
Мистецтво
Музика
Населення
Освіта
Охорона безпеки життя
Охорона Праці
Педагогіка
Політика
Право
Програмування
Промисловість
Психологія
Радіо
Регилия
Соціологія
Спорт
Стандартизація
Технології
Торгівля
Туризм
Фізика
Фізіологія
Філософія
Фінанси
Хімія
Юриспунденкция






Стиснення грунту в умовах одно- та тривісного напруженого стану. Компресійні випробування,визначення модуля деформації,коефіцієнтів бокового тиску і бокового розширення.

Ущільнення фунтів поєднує в собі кілька фізичних процесів, зокрема зміну об'єму nop, стиснення твердих часток, води газів, що містяться в порах, деформації плівок зв'язної води, розчинення газів у поровій воді, взаємне змі­щення та руйнування структурних агрегатів. Деформації твердих часток фунту, плівок зв'язної води, газів і води, якщо вони не мають вільного виходу на по верхню, при звичайних напругах в основах фундаментів незначні й практично миттєво відновлюються після зняття навантаження, тобто вважаються пружни­ми. Таким чином, можна вважати, що деформації стиснення виникають тільки за рахунок зменшення об'ему nop грунту.

У лабораторних умовах показники стисливості фунтів звичайно визна­чають шляхом їх ущільнення під статичним навантаженням без можливості бі­чною розширення (в жорсткому кільці). При такому завантаженні деформації розвиваються тільки в одному напрямі. Дослідження виконують у компресій­ному приладі (одометрі).

Це кругла обойма 1 з днищем 2 (рис.4.1.). Грунт 3 розміщується в кільці 4. Навантаження N передається через штамп 5. Фільтрація води проходить через отвори, які є в днищі і штампі. Деформації грунту вимірюють індикаторами 6.

Оскільки зразок грунту в кільці не має можливості бічного розширення, то зміну його пористості (відношення об‘єму пор до об‘єму грунту (2.8)) під тиском , розподіленим по площі , знайдемо з виразу

, де (4.1)

- початкова висота зразка; - деформація зразка від тиску . Об‘єм твердих частинок до і після деформації незмінний (наше припущення), тому об‘єм твердих частинок в одиниці об‘єму зразка дорівнюватиме (2.9)

, де (4.2)

- початковий коефіцієнт пористості грунту.

Згідно з (2.10) . Поділивши вираз (4.1) на (4.2), одержимо вираз для визначення зміни коефіцієнта пористості грунту під дією тиску

(4.3)

Урахувавши для одержимо остаточний вираз для коефіцієнта пористості при дії тиску

(4.4)

Після визначення значень при різних тисках будують залежність , що має назву компресійної кривої (рис. 4.2).

При зростанні тиску коефіцієнт пористості зменшується (лінія 1 рис. 4.2). Якщо тиск поступово зменшувати, то зразок частково відновить деформацію і коефіцієнт пористості зросте (лінія 2 рис. 4.2). Первинна висота зразка не буде повністю відновлена, тому що при розвантаженні відновлюються лише пружні деформації.

На початковій ділянці залежність є лінійною, а деформації незначними. На цій ділянці чинять опір зовнішнім навантаженням структурні зв’язки грунтів. Міцність цих зв’язків називається структурною міцністю .

Якщо обмежитись незначною зміною тиску р=0,1…0,5мПа (реальний тиск, який може виникати в основах споруд), то компресійну криву можна замінити прямою лінією АВ (рис.4.3)

Тангенс кута нахилу цієї прямої до осі тисків називається коефіцієнтом стисливості

, де (4.5)

- коефіцієнти пористості відповідно при початковому і кінцевому тиску.

З певним (доволі суттєвим) наближенням можна записати рівняння компресійної кривої у такому вигляді

(4.6)

Модуль деформації грунту за результатами компресійних дослідів визначають за виразом

, де (4.7)

- коефіцієнт, що враховує неможливість поперечного розширення грунту в компресійному приладі.

В компресійному приладі грунт може деформуватись тільки у вертикальному напрямку. Це погано моделює роботу грунту під фундаментами невеликих розмірів (фундаменти більшості будівель), де величина горизонтальних деформацій є суттєвою. Під фундаментами великих розмірів переважають деформації грунту у вертикальному напрямку. Тому модуль деформації, одержаний за результатами компресійних випробувань, широко використвується для проектування гідротехнічних споруд, а в промисловому і цивільному будівництві тільки для споруд III класу капітальності.

З урахуванням вищесказаного модуль деформацій грунтів , знайдений за результатами компресійних випробувань визначають за формулою

, де (4.8)

- поправочний коефіцієнт .

Зазначимо також, що безпосередньо схема компресійних випробувань близька лише обмеженому колу інженерних задач, котрі можна розглядати як одновимірні (ущільнення грунту при горизонтальних нашаровуваннях під дією власної ваги; осідання обмеженої товщі фунту в основі розвиненого у плані фундаменту тощо). Однак через простоту методики результати компресійних випробувань із певними припущеннями широко використовують й у значно складніших розрахунках.

Найбільше реальному наиружено-деформованому станові зразка в масиві відповідають випробування у приладах трьохосьового стиснення (стабіломет- pax). ІІри цьому зразки грунту мають циліндричну чи іноді кубічну форму. Циліндричний зразок фунту 1 висотою h у гумовій оболонці 2 спершу піддають бічному стисненню від ріди ни 3, що заповнює робочу камеру при­ладу, с творюючи в ґрунті бічну напру­гу 02=<т3- Потім через шток 4 до порш­ня 5 ступенями прикладають вертика­льне навантаження F, створюючи в зразку нормальну напругу ст\. Виміри тиску в камері стабілометра виконують манометром, а абсолютні вертикальні деформації зразка zJ/?f - індикаторами. Напруги (Т\ називають максимальною головною, а а2 та гт3 - мінімальними ловними. Збільшуючи <т\9 можна ти руйнування зразка або у вигляді зсування за

 

 

 

нахиленою поверхнею, або шляхом суттєвого розширення в боки зі зменшенням висоти.

Модуль деформації за результатами стабілометричних випробувань визначають для довільної точки в межах ділянки пропорційності ОА (рис. 4.4) за формулою

, де (4.9)

- величина бічних стискуючих напружень (девіатор напружень) ви­значається з виразу

, де (4.10)

- загальна величина головного напруження (після сумування з );

, де (4.11)

- початкова площа поперечного перерізу зразка; - площа поперечного перерізу зразка при дії напруження ;

, де (4.12)

- вертикальна деформація зразка при напруженні ; - початкова висота зразка.

До речі, за даними випробувань грунту в умовах трьохосьового стис­нення можуть бути визначені і його інші деформаційні характеристики: модуль зрушення G та модуль об'ємної деформації К. Ці величини функціона­льно пов'язані з модулем деформації й коефіцієнтом Пуассона:

, .

 

Зсування ґрунтів при простому та тривісному стисненні. Закон Купона. Умова міцності Кулона-Мора. Визначення питомого зчеплення та кута внутрішнього тертя ґрунтів в лабораторних і польових умовах.

 

Розглянемо споруду, яка розміщена поблизу укосу і сприймає горизонтальні й вертикальні навантаження (рис. 3.1). В даному випадку несуча здатність грунту може бути вичерпана в результаті втрати стійкості укосу (лінія 1), площинного зсуву фундаменту (лінія 2) чи випирання грунту з-під підошви фундаменту (лінія 3).

В усіх випадках втрата несучої здатності відбуває-ться шляхом зсуву однієї частини грунту (споруди) відносно іншої, нерухомої частини. Міцність грунту буде тим більшою, чим більший його опір зсуву, тобто чим більшими будуть коефіцієнт тертя і зчеплення між окремими частинками грунту.

Опір грунтів зсуву.Опір зсуву в лабораторних умовах найчастіше визначають за допомогою одноплощинних зсувних приладів, основною частиною яких є зрізувач (рис. 3.2).

Випробування виконують таким чином. У спеціальних приладах (ущільнювачах) попередньо ущільнюють зразки грунту під тиском, при якому вони будуть випробуватись на зсув (наприклад, 0,1; 0,2; 0,3мПа). Потім переносять один зразок у зрізувач, прикладають вертикальне навантаження, яке створює нормальний тиск, при якому ущільнюва-вся зразок грунту в ущільнювачі (наприклад, р1=0,1мПар=N/A, де A – площа поперечного перерізу зразка грунту) і окремими ступенями передають на рухому обойму горизонтальні навантаження до моменту, коли відбудеться зсув. Кожний ступінь витримується до умовної стабілізації, при якій горизонтальне переміщення верхньої (рухомої) частини зразка не перевищує 0,01мм за останні 2хв. спостережень.

Залежність між дотичними (зсувними) напруженнями (τ=Q/A) у зразках і їх переміщенням буде мати вигляд, показаний на рис. 3.3.

За результатами дослідів будують графік. На осі абсцис наносять нормальні напруження , а на осі ординат - відповідні їм значення граничних зсувних напружень (рис. 3.4, чи 3.5).

Для графіків відповідно можна записати

(3.1)

, де (3.2)

- коефіцієнт внутрішнього тертя; - кут внутрішнього тертя; - питоме зчеплення (викликане структурними зв’язками грунту).

Ці залежності виражають закони Кулона для сипких і зв’язних грунтів. Величини і називаються характеристиками міцності грунтів. Вирази (3.1) і (3.2) справедливі для граничного стану грунту, тобто стану, при якому він вичерпує свою міцність, і в області невеликих нормальних напружень (до 0,6мПа).

Якщо лінію залежності провести до перетину з віссю абсцис, одержимо значення - фіктивний тиск зв‘язності. З рис. 3.5 видно, що

(3.3)

Стабілометричні випробування. Випробування грунтів роз-глянутим вище методом одноплощинного зсуву не відповідає складному напруженому стану грунтів при дії зовнішніх навантажень від фундаментів будівель і споруд, тому останнім часом для визначення характеристик міцності використовують випро­бування на трьохосьове стиснення. Схема приладу на трьохосьо­ве стиснення (стабілометра) показана на рис. 3.7. Циліндрич­ний зразок грунту 1 в гумовій оболонці піддають всесторонньому стиненню рідиною 2 інтенсивністю . Потім через шток 3 до поршня 4 прикладають вертикальне навантаження , створюючи на зразок вертикальний тиск (після сумування з ). Збільшуючи тиск можна досягти повного руйнування зразка грунту або значного його розширення.

Для визначення характеристик міцності сипких грунтів до­статньо виконати одне випробування і побудувати коло Мора, діаметр якого дорівнює . Дотична до кола Мора , про­ведена через початок координат, визначить кут внутрішнього тертя (рис. 3.8). Аналітичний вираз для визначення має вигляд

(3.5)

Для зв‘язних грунтів виконується два випробування при різних значеннях . Потім будують два кола Мора (рис. 3.9), дотична до яких і визначить кут внутрі-шнього тертя й питоме зчеплення грунту . Ана-літичні вирази для визначення та мають вигляд

(3.6)

(3.7

 


Читайте також:

  1. IV. Агротехніка квітково-декоративних рослин відкритого грунту.
  2. R – розрахунковий опір грунту основи, це такий тиск, при якому глибина зон пластичних деформацій (t) рівна 1/4b.
  3. S. БЕЗПЕКА ЖИТТЄДІЯЛЬНОСТІ В УМОВАХ НАДЗВИЧАЙНИХ СИТУАЦІЙ
  4. VIІІ. ПЕРЕЛІК ЗАПИТАНЬ ДЛЯ КОНТРОЛЮ З КОЖНОГО МОДУЛЯ І ДИСЦИПЛІНИ В ЦІЛОМУ
  5. VІІI. Період окупності капітальних вкладень (інвестувань) в умовах сьогоднішнього дня (динамічний метод).
  6. Автономне існування людини в екстремальних умовах
  7. Актуальність і завдання курсу безпека життєдіяльності. 1.1. Проблема безпеки людини в сучасних умовах.
  8. АМПЛИТУДНАЯ МОДУЛЯЦИЯ
  9. Аналіз ефективності реальних інвестиційних проектів в умовах ризику
  10. Аналіз ризикованості підприємства на основі показників фінансового стану.
  11. Аналіз та оцінка інвестування в умовах ризику. Якісні та кількісні методи оцінювання проектних ризиків.
  12. Аналітична робота в умовах кризи.




Переглядів: 2619

<== попередня сторінка | наступна сторінка ==>
Водні властивості ґрунтів. Взаємодія ґрунтового скелету з поровою водою. Гідродинамічний тиск при фільтрації води в ґрунті. | Розподіл напружень в ґрунтовому середовищі при різних умовах завантаження. Визначення тиску ґрунту від власної ваги та додаткового тиску в інженерній практиці.

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.008 сек.