МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Етапи побудови економетричної моделіЕмпірична модель множинної лінійної регресії Емпірична модель являє собою статистичний аналог теоретичної моделі (16.1). За її допомогою визначаються статистичні оцінки параметрів . При цьому використовується статистична обробка вибірки. В загальному вигляді емпірична модель записується як: (16.4) У векторно-матричній формі система (16.4) має вигляд: (16.5) де
Компоненти вектора є статистичними оцінками компонент теоретичного вектора лінійної множинної регресії (16.2), а компоненти вектора похибок – статистичні оцінки випадкових збудників вектора . Якщо теоретичний вектор є величиною сталою і нам невідомою, то емпіричний вектор ми можемо визначити шляхом обробки статистичної інформації вибірки обсягом n. Враховуючи те, що вибірка складає лише незначну частину генеральної сукупності (n≤N), то інформація, яку одержимо при статистичній обробці, про регресори Xj моделі буде не повною і для кожної іншої вибірки буде потерпати певні зміни. Отже, компоненти емпіричного вектора будуть містити елемент випадковості. Таким чином, , як і сам вектор будуть випадковими величинами, які мають певні закони розподілу ймовірностей із відповідними числовими характеристиками. Із вище наведеного можемо тепер стверджувати, що є статистичною оцінкою для теоретичного вектора . А тому постають питання математичної статистики: зміщена чи незміщена ця статистична оцінка; в якому довірчому інтервалі із заданою надійністю γ можуть перебувати теоретичні компоненти (параметри) і сама функція регресії; як здійснити перевірку на статистичну значущість теоретичних параметрів по заданому рівню значущості α. Для вирішення цих питань нам необхідно визначити числові характеристики для параметрів (j=0,1,2,...,m) і для самої функції регресії, використовуючи при цьому елементи матричної алгебри як інструментарію, застосовуючи який ми можемо без громіздких викладок отримати необхідні результати.
Розглянемо етапи побудови та аналізу економетричних моделей на прикладі: Приклад 16.1.Необхідно провести дослідження залежності ціни автомобіля (Y) від таких характеристик як вік авто (X1) та його об’єм двигуна (X2) на основі вибіркових даних, наведених в таблиці 16.1. Таблиця 16.1
Припустимо, що між ціною та означеними технічними характеристиками існує лінійна залежність:
Необхідно: 1) обчислити статистичну оцінку вектора , тобто визначити для залежності між досліджуваним фактором Y (ціною автомобіля) та пояснюючими змінними X1 (вік автомобіля) і X2 (об’єм двигуна); 2) проаналізувати ступінь адекватності побудованої моделі та вибіркових даних; 3) виконати дисперсійний аналіз моделі та обчислити коефіцієнт множинної детермінації ; 4) перевірити статистичну значущість коефіцієнта детермінації на основі критерію Фішера; 5) визначити виправлені дисперсії та виправлені середньоквадратичні відхилення для статистичних оцінок ; 6) із заданою надійністю побудувати довірчі інтервали для параметрів ; 7) одержати прогнозне значення та побудувати для нього із заданою надійністю довірчі інтервали; 8) визначити часткові коефіцієнти еластичності . Читайте також:
|
||||||||
|