Студопедия
Новини освіти і науки:
Контакти
 


Тлумачний словник






Узгоджений фільтр

Рішення задачі виявлення (детектування) сигналу на тлі білого шуму можна вирішити не лише використанням кореляційного приймача, але і за допомогою так званого узгодженого фільтру.

Узгоджений фільтр (matched filter) - це лінійний пристрій, який максимізує на своєму виході відношення сигнал/шум під час подачі на вхід суми сигналу і шуму.

Розглянемо альтернативну кореляційному приймачу схему демодуляції і детектування цифрового сигналу на рис. 8.

Протягом інтервалу передачі сигналу Т бінарна низькочастотна система передає один з двох можливих сигналів, що позначаються як s1(t) і s2(t). Так само бінарна смугова система передає один з двох можливих сигналів, що позначаються як s1(t) і s2(t). Оскільки загальне трактування демодуляції і детектування, по суті, збігається для низькочастотних і смугових систем, використовуватимемо запис si(t) для позначення передаваного сигналу, незалежно від того, є система низькочастотною або смуговою.

 

Рис. 8. Два основні етапи в процесі демодуляції/детектування цифрових сигналів

Отже, для будь-якого каналу двійковий сигнал, переданий протягом інтервалу (0, T), представляється таким чином:

Прийнятий сигнал y(t) спотворюється унаслідок дії шуму n(t) і, можливо, неідеальної імпульсної характеристики каналу hc(t) і описується наступною формулою:

y(t) = si(t)*hc(t) + n(t). (36)

У нашому випадку n(t) є процесом AWGN (additive white Gaussian noise) з нульовим середнім, а знак "*" позначає операцію згортки. Для бінарної передачі по ідеальному, вільному від спотворень каналу, де згортка з функцією hc(t) не погіршує якість сигналу (оскільки для ідеального випадку hc(t) — імпульсна функція), вигляд y(t) можна спростити:

y(t) = si(t) + n(t), i = 1, 2, 0 £ t £ Т. (37)

Припустимо, що на вхід лінійного, інваріантного в часі приймаючого фільтру, за яким слідує пристрій дискретизації (рис. 8), подається відомий сигнал s(t) плюс шум AWGN n(t). У момент часу t = Т сигнал на виході пристрою дискретизації z(T) складається з компонента сигналу xi і компонента шуму п0. Дисперсія шуму на виході (середня потужність шуму) записується як s02. Відношення миттєвої потужності шуму до середньої потужності шуму (S/N)T, у момент t = Т на виході пристрою дискретизації етапу 1 дорівнює наступному:

. (38)

Нам потрібно знайти таку функцію передачі узгодженого фільтру H0(f), яка буде максимізуватина виході фільтрувідношення (S/N)T. Сигнал x1(t) на виході фільтру можна виразити через функцію передачі фільтру H(f) (до оптимізації) і спектральну щільність сигналу на вході

, (39)

де S(f) — спектральну щільність сигналу s(t) на вході фільтру.

Якщо двостороння спектральна щільність потужності шуму на вході рівна N0/2 Вт/Гц, і, враховуючи, що спектральна щільність потужності на виході лінійної, інваріантної в часі системи при подачі на вхід випадкового процесу X визначається як GY(f)=GX(f)|H(f)|2, то потужність шуму на виході можна записати таким чином:

. (40)

Підставляючи (39), (40) в (38), отримуємо вираження для (S/N)T:

(41)

Знайдемо тепер значення H(f) = H0(f), при якому (S/N)T досягає максимуму. Для цього нам знадобиться нерівність Шварца, одна з форм запису якого представлена нижче.

. (42)

Рівність досягається при f1(x) = kf2*(x), де k — довільна константа, а знак "*" позначає комплексно зв'язане значення. Якщо ототожнити H(f) з f1(x) і S(f)ej2πfT з f2(x), можемо записати наступне:

. (43)

Підстановка у вираження (41) дає

(44)

або

, (45)

де енергія Е вхідного сигналу s(t) рівна

. (46)

Отже, максимальний вихід (S/N)Tзалежить від енергії вхідного сигналу і спектральної щільності потужності шуму, але не від конкретної форми сигналу.

Рівність у вираженні (45) виходить лише при використанні функції передачі оптимального фільтру H0(f):

H(f) = H0(f) = kS*(f)e j2πfT (47)

або

h(t) = Á-1{kS*(f)e j2πfT} (48)

де Á-1 зворотне перетворення Фур'є.

 

Оскільки s(t) — дійсний сигнал, і враховуючи, що зрушення на якийсь час T в часовій області еквівалентний множенню на e-j2πfT (зрушенню фази на -2πfT) у частотної області можна записати наступне:

(49)

Отже, імпульсна характеристика фільтру, що забезпечує максимальне відношення сигнал/шум на виході фільтру, є дзеркальним відображенням сигналу повідомлення s(t), що запізнюєтьсяна час передачі символу Т. Відзначимо, що затримка в Т секунд робить рівняння (49) причинним, тобто запізнювання на Т секунд робить h(t) функцією позитивного часу в проміжку 0 £ t £ Т. Без затримки в Т секунд відгук s(-t) не реалізовується, оскільки в цьому випадку він є функцією негативного часу.

У формулі (49) і на рис. 9, а показана основна властивість узгодженого фільтру: імпульсна характеристика такого фільтру - це дзеркальне відображення (відносно осі t=0) сигналу з деякою затримкою. Отже, якщо сигнал рівний s(t), його дзеркальне відображення рівне s(-t), а дзеркальне відображення, що запізнюється на Т секунд, - це s(T-t). Вихід z(t) причинного фільтру в часовій області можна описати як згортку прийнятого вхідного сигналу y(t) з імпульсною характеристикою фільтру:

. (50)

Рис. 9. Корелятор і узгоджений фільтр: а) характеристика узгодженого фільтру; б) порівняння виходів корелятора і узгодженого фільтру

Підставляючи h(t) з формули (49) в h(t-t) у формулі (50) і вибираючи довільну константу k рівної одиниці, отримуємо наступне:

(51)

Для моменту часу t = Т формулу (51) можна переписати таким чином:

(52)

З останнього вираження видно, що інтеграл від здобутку прийнятого сигналу y(t) на копію переданого сигналу s(t) на інтервалі передачі символу є кореляцією y(t) з s(t). Припустимо, що прийнятий сигнал y(t) корелює зі всіма сигналами-прототипами si(t) (i= 1,.... М) і для цього використовується набір з М кореляторів. Сигнал si(t), кореляція якого (або інтеграл від здобутку) з y(t) дає максимальне значення zi(t), — і є сигнал, який узгоджується з y(t) краще за останніх.

 


Читайте також:

  1. RLC-фільтр четвертого порядку
  2. Активні RC-фільтри (АRC- фільтри).
  3. Багатофункціональні фільтри трафіку в FreeBSD
  4. Баштові біофільтри .
  5. Біофільтри із пластмасовим завантаженням .
  6. Будова фільтрів
  7. Вивід основного рівняння фільтрації
  8. Втрата теплоти на нагрівання інфільтрованого повітря
  9. Г-подібні індуктивно-ємнісний (LC) та активно-ємнісний (RC) фільтри
  10. Демон natd, використання пакетних фільтрів ipfw та pf
  11. Джерела живлення електрофільтрів і регулювання їхніх параметрів
  12. Дисковий вакуум-фільтр




<== попередня сторінка | наступна сторінка ==>
Фізика роботи оптимального кореляційного приймача | Контрольні питання

Не знайшли потрібну інформацію? Скористайтесь пошуком google:


 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.004 сек.