Об’єми тіл, утворених обертанням криволінійної трапеції, обмеженої кривою у=f(x), віссю ОХ і двома вертикалями х=а і x=b, навколо осей ОХ і ОY, виражаються відповідно формулами:
1) ; 2) . (8)
Обчислити об’єми тіл, утворених обертаням фігури, обмеженої однією напівхвилею синусоїди у=sinx і відрізком 0£х£p осі ОХ навколо:
а) осі ОХ і б) осі OY.
a) ;
б) .
Об’єм тіла, утвореного обертанням навколо осі ОY фігури, обмеженої кривою х=g(y), віссю OY і двома паралелями у=с і у=d, можна визначати по формулі:
,
яка одержується із приведеної вище формули 1)(8) шляхом перестановки координат х і у.
Якщо крива задана в іншій формі (параметрично, в полярних координатах і т.д.), то в приведених формулах потрібно зробити відповідну заміну змінної інтегрування.
В більш загальному випадку об’єми тіл, утворених обертанням фігури, обмеженої кривими у1=f1(x) i y2=f2(x) (причому f1(x)£f2(x)) і прямими х=а, х=b, навколо координатних осей ОХ і ОY, відповідно рівні
,
.
Об’єм тіла, одержаного при обертанні сектора, обмеженого дугою кривої r=F(j) і двома полярними радіусами j=a, j=b, навколо полярної осі, може бути обчислений за формулою
. (9)
Цією ж формулою зручно кристуватися при знаходженні об’єму тіла, одержаного обертанням навколо полярної осі фігури, обмеженої деякою замкнутою кривою, заданою в полярних координатах.