МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Детермінований еквівалент лотереї. Страхова сумаДетермінований еквівалент лотереї L — це гарантована сума , отримання якої еквівалентне участі в лотереї, тобто ~ L. Отже, визначається з рівняння: U() = M(U(Х)), або = U – 1(M(U(Х))), де U – 1 (×) – функція, обернена до функції U(x). Страховою сумою (СС)називають величину детермінованого еквівалента, взяту з протилежним знаком: CC(Х) = –. Якщо особа, яка приймає рішення, стикається з несприятливою для неї лотереєю, то природно запитати, скільки б вона заплатила (в одиницях виміру критерію х) за те, щоб не брати участь у цій лотереї. Для визначення розмірів цього платежу вводиться до розгляду величина, яку називають премією за ризик (надбавкою за ризик). Ця премія(p(Х)) є величиною (в одиницях виміру критерію х), якою суб’єкт керування (особа, що приймає рішення) згоден знехтувати (уступити її) з середнього виграшу, щоб уникнути ризику, пов’язаного з лотереєю. Зауважимо, що для зростаючих функцій корисності величину премії за ризик p(Х) в лотереї L покладають рівною різниці між сподіваним виграшем та детермінованим еквівалентом, тобто
1 Премія за ризик. Різне ставлення до ризику та функція корисності Необхідно звернути увагу на те, що вигляд функції корисності може дати інформацію про ставлення до ризику особи, яка приймає рішення. Принагідно слід відмітити, що особу, яка приймає рішення, називають несхильною до ризику, коли для неї більш пріоритетною є можливість одержати гарантовано сподіваний виграш у лотереї, аніж брати в ній участь. А тому умову несхильності до ризику можна записати так U(M(X)) > M(U(X)). Особу, яка приймає рішення, називають схильною до ризику, якщо для неї більш пріоритетною є участь у лотереї, ніж можливість одержати гарантовано сподіваний виграш. Відповідно, умова схильності до ризику записується як U(M(X)) < M(U(X)). Проміжне значення між схильністю та несхильністю до ризику відіграє нейтральність (байдужість) до ризику. Вона визначається байдужістю особи у виборі між отриманням гарантованої суми, яка збігається із сподіваним виграшем, та участю у лотереї. Очевидно, що умова байдужості до ризику: U(M(Х)) = M(U(Х)). Необхідно відмітити, що має місце твердження: особа, яка приймає рішення, в тому і тільки тому випадку є: а) несхильною до ризику, коли її функція корисності опукла вгору; б) схильною до ризику, коли її функція корисності опукла вниз; в) нейтральною до ризику, коли її функція корисності є лінійною. 5 Криві байдужості Зауважимо, що в (п+1) – вимірному евклідовому просторі поверхнею байдужості є п-вимірна поверхня, що відповідає фіксованому рівню (U=const) функції корисності. Як приклад розглянемо функцію корисності, яка широко використовується у фінансово-інвестиційному аналізі [7, 8]: де m — величина сподіваного прибутку (ефективності тощо), s — величина ступеня ризику (середньоквадратичне або семіквадратичне відхилення тощо). Інтерпретація функції U(m, s) така: інвестор вважає корисним для себе збільшення значення ефективності, але уникає відхилення цієї ефективності від сподіваного значення. Чим більше значення k, тим тенденція уникнення ризику, що породжується невизначеністю, проявляється більшою мірою. А тому величину k можна розглядати як кількісну міру толерантності інвестора до ризику (або як міру несхильності до ризику). Відмітимо, що значення величини k є індивідуальним для кожного інвестора. Необхідно наголосити, що геометричним образом зазначеної функції корисності є поверхня у тривимірному просторі (т, s, U), а томуякщо покласти U(m, s) = m2 – ks2 = U = const, то, надаючи різні значення константі U, отримуємо сімейство кривих (рис.2.1.6): m2 – ks2 = Ui , i = 1, 2, ... , n = const. Cімейство кривих (в даному випадку гіпербол) в теорії функцій багатьох змінних називають лініями рівня, а в теорії корисності — кривими байдужості. На рис.2.1.6 побудовано криві байдужості для певної особи (коефіцієнт k — фіксований (k = const)). Рис.2.1.6. Криві байдужості особи (різні рівні функції корисності) Як уже відмічалось, різні криві байдужості трактуються як різні рівні значень функції корисності. Це означає, що збільшити норму прибутку і водночас залишитися при тій же самій величині корисності, можна лише за рахунок збільшення ступеня ризику. Відмітимо, у свою чергу, що неузгоджена одночасна зміна значень норми прибутку і оцінки ризику може призвести до зміни рівня корисності. Так, наприклад, зростання норми прибутку при незмінному ступені ризику означає перехід на іншу, «правішу», криву байдужості, що відповідає у даному випадку більшому значенню функції корисності. На рис.2.1.6 цій ситуації відповідає перехід з точки А до точки В. Аналогічно зменшення ступеня ризику при незмінній нормі прибутку означає перехід на криву байдужості, що відповідає більшій величині функції корисності. На рис.2.1.6 цій ситуації відповідає перехід з точки А до точки С. 6Функції корисності з інтервальною нейтральністю до ризику
Необхідно відмітити, що функція корисності з інтервальною нейтральністю відображає ставлення до ризику особи, для якої характерна нейтральна позиція щодо ризику за умов, що результат (грошовий дохід, багатство) знаходиться в певних межах. У той же час при розгляді всього інтервалу зміни результату, корисність якого оцінюється, ставлення до ризику не буде нейтральним [3]. а) б) Рис. 2.1.7. Інтервальна нейтральність: а– глобальна несхильність до ризику; б – глобальна схильність до ризику Зростаюча функція з інтервальною нейтральністю до ризику, яка відображає глобальну несхильність до ризику (опукла в гору), має такий вигляд: , аі > 0, і = 1, . . . , п. На рис.2.1.7 (а) зображений графік такої функції для випадку, коли а1> а2 > ... > an>0, 0 = b1 < b2 < ...<bn. Зростаюча функція з інтервальною нейтральністю, яка відображає глобальну схильність до ризику, має такий вигляд: аі > 0, і = 1, . . . , п. На рис.2.1.7 (б) зображений графік такої функції для випадку, коли 0 = a1< a2 < ... < an;0 = b1 > b2 >... > bn.
Читайте також:
|
||||||||
|