Чтобычисленно определить минимальную величину запаса недефицитного ресурса, не меняющую оптимальное решение,
необходимо подставить координаты оптимальной точки в левую часть соответствующего ограничения.
Чтобы выяснить, до каких пределов падение спроса на краску 2-го вида не повлияет на производство в точке , используем правило №3.4. Подставляем в левую часть ограничения (4) координаты точки Е, получаем
.
Делаем вывод: предельный уровень, до которого может упасть спрос на краску 2-го вида и при котором не изменится оптимальность полученного ранее решения, равен т краски в сутки.
Экономический смысл ограничения (3)
в том, что объем продаж краски 2-го вида может превысить объем продаж краски 1-го вида максимум на 1 т. Дальнейшее увеличение продаж краски 2-го вида по сравнению с краской 1-го вида графически отобразится перемещением прямой (3) влево и вверх, но никак не повлияет на оптимальность точки Е. Но если разность спросов на краску 2-го и 1-го видов будет уменьшаться, то прямая (3) будет перемещаться ниже и правее. Последним положением прямой (3), при котором точка Е остается оптимальной, является пересечение с точкой Е (см. рис.3.1). Согласно правилу №3.4, подставим координаты точки в левую часть ограничения (3)
[т краски].
Получаем, что разность спросов на краску 2-го и 1-го вида в точке стала отрицательной. То есть, прохождение прямой (3) через точку Е означает, что краску 2-го вида будут покупать в меньшем объеме, чем краску 1-го вида
[т краски/сутки].
Делаем вывод: максимальное превышение спроса на краску 1-го вида над спросом на краску 2-го вида, при котором оптимальное решение в точке Е не изменится, составляет 2 т краски в сутки.
Результаты решения первой задачи анализа оптимального решения на чувствительность представлены в табл.3.1.