З метою зручності перетворення чисті двійкові числа представляються десятковими або шістнадцятковими. Однак, двійково-десяткове перетворення – операція не проста. В калькуляторах, магістралях і числових приладах, коли на доступних користувачу виходах і входах широко розповсюджені десяткові числа, для їх представлення використовують спеціальний двійково-десятковий код (ДДК). В табл. 1.3 наведено декілька десяткових чисел і відповідних їм двійково-десяткових еквівалентів (система 8421). Цим визначаються ваги позицій кожного з чотирьох бітів ДДК (використовують інші ДДК, наприклад 5421 і плюс 3).
Таблиця 1.3 – Двійково-десятковий код
Десяткове число
Двійково-десяткові числа
Запишемо десяткове число 3691 в ДДК 8421. Кожна десяткова цифра перетворюється прямо в свій двійково-десятковий еквівалент із 4 бітів, і перетворення дають 369110=0011 0110 1001 0001ДДК.
Перетворимо тепер двійково-десяткове число 1000000001110010 в його десятковий еквівалент. Кожна група із 4 бітів прямо перетворюється в її десятковий еквівалент, і тоді отримуємо 1000 0000 0111 0010ДДК = 807210:
Мікропроцесори складають чисті двійкові числа, але вони мають, однак, команди для перетворення результату своїх складань в двійково-десяткове записування. Отримані двійково-десяткові числа легко потім представити в десятковому записі, використовуючи прості процедури, що були описані вище.