МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Відношення еквівалентностіОзначення 1.3.11. Бінарне відношення R називають відношенням еквівалентності, коли воно рефлексивне, симетричне і транзитивне. Отже, R є відношенням еквівалентності, якщо: 1) ; 2) ; 3) . Якщо при цьому , то говорять, що – відношення еквівалентності на множині . Наприклад, відношення є відношенням еквівалентності. Відношеннями еквівалентності є також відношення рівності, рівно потужності множин, конгруентності, подібності, діагональне, порожнє та універсальне відношення. Важливу роль відіграє в математиці відношення “мають однакову остачу при діленні на k” або “конгруентні за модулем k”, яке є відношенням еквівалентності на множині N натуральних чисел для будь-якого фіксованого kÎN. Відношення конгруентності за модулем k часто позначають a º b (mod k). Цьому відношенню належать, наприклад, пари натуральних чисел (17,22), (1221,6), (42,57) для k=5, тобто 17 º 22(mod 5), 1221 º 6 (mod 5), 42 º 57 (mod 5). Нехай – відношення еквівалентності і . Означення 1.3.12. Переріз відношення за елементом називають класом еквівалентності за відношенням і позначають або . Отже, за означенням . Тобто клас еквівалентності містить всі такі елементи множини , які перебувають у відношенні з елементом . Наприклад, якщо – відношення паралельності у площині , а – деяка фіксована пряма у цій площині, то клас еквівалентності містить усі прямі площини , паралельні прямій . Теорема 1.3.1. Будь-які два класи еквівалентності за відношенням або не мають спільних елементів, або збігаються. Теорема 1.3.2. Будь-яку множину , в якій задано відношення еквівалентності , можна подати у вигляді об’єднання різних класів еквівалентності за відношенням , тобто . Означення 1.3.13. Множину всіх класів еквівалентності за відношенням називають фактор-множиною множини за відношенням : або , де – сукупність таких елементів множини , яким відповідають різні класи еквівалентності. Наприклад, якщо – сукупність всіх студентів певної групи, які отримали за іспит оцінку , а – відношення еквівалентності, що визначається умовою тоді і тільки тоді, коли і , то . Фактор-множина для відношення “конгруентні за модулем 3” на множині N натуральних чисел складається з трьох класів { 3k | kÎN }, { 3k-1 | kÎN } і { 3k-2 | kÎN}. Потужність фактор-множини |А/R| називають індексом розбиття або індексом відношення еквівалентності R. Нехай R відношення еквівалентності на множині А. Відображення множини А на фактор-множину А/R, яке кожному елементу aÎА ставить у відповідність клас еквівалентності , називають канонічним або природним відображенням множини А на фактор-множину А/R.
Читайте також:
|
||||||||
|