![]()
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Основні визначенняЛекція № 12. НЕОРІЄНТОВАНІ ГРАФИ
Граф Кожне ребро e з|із| E інцидентно рівно двом вершинам Прийнято позначення n для числа вершин графа (потужність множини|безлічі| Якщо всі ребра Мал. 12.1
Маршрут – послідовність ребер, в якій кожні два сусідні ребра мають загальну|спільну| вершину. Граф зв'язний, якщо будь-які дві вершини сполучені|з'єднані| хоч би одним маршрутом. Число ребер маршруту визначає його довжину. Ребра, інцидентні одній парі вершин, називаються паралельними або кратними. Граф з|із| кратними ребрами називається мультиграфом. Ребро Мал. 12.2
Ступінь|міра| deg(v) вершини – це число ребер, інцидентних v. У неографі| сума ступенів|мір| всіх вершин рівна подвоєному числу ребер (лема про рукостискання):
Петля дає внесок|вклад|, рівний 2, в ступінь|міру| вершини. Статечна|поважна| послідовність – послідовність ступенів|мір| всіх вершин графа, записана в певному порядку|ладі| (за збільшенням або убуванню). Приклад|зразок| 12.1. Статечна|поважна| послідовність неографа|, зображеного|змальованого| на мал. 12.1, записана за збільшенням, виглядає так:
Сума ступенів|мір| всіх вершин графа рівна:
Цей результат не суперечить|перечить| лемі про рукостискання, оскільки граф має шість ребер (m = 6). Матриця суміжності графа – квадратна матриця A порядку|ладу| n, де елемент Приклад|зразок| 12.2. Граф, показаний на мал. 12.1, має наступну|таку| матрицю суміжності
Матриця інцидентності I – ще один спосіб опису графа. Число рядків цієї матриці рівне числу вершин, число стовпців – числу ребер; Приклад|зразок| 12.3. Граф, показаний на мал. 12.1, має наступну|таку| матрицю інцидентності
Граф Компоненту зв'язності графа – максимальний по включенню|приєднанню| вершин і ребер зв'язкової підграф. Ранг графа Дерево – зв'язковий граф, що містить|утримує| n – 1 ребро. Приклад|зразок| 12.4. На мал. 12.3 показане дерево, яке одночасно є|з'являється,являється| остовним| підграфом графа, показаного на мал. 12.1. Мал. 12.3
Читайте також:
|
||||||||
|