Із означення множини дійсних чисел випливає, що ця множина впорядкована.
Множину дійсних чисел позначатимемо буквою .
ЛЕКЦІЯ 4
1. Поняття ізоморфізму.
2. Інтерпретація множини дійсних чисел.
3. Найбільш вживані числові множини.
4. Межі числових множин.
5. Абсолютна величина числа.
Нехай задані дві множини об'єктів і , причому в першій визначені деякі відношення між її об'єктами, а в другій – відношення між відповідно своїми об'єктами.
Множини і з указаними на них відношеннях називаються ізоморфними (позначається ), якщо між ними встановлено бієктивне відображення , при якому з наявності відношення випливає відношення , де .
Будь-яку множину об'єктів , ізоморфну множині , можна розглядати як "модель" множини і зводити вивчення властивостей множини до вивчення властивостей "моделі" .
Нехай і − дві частково впорядковані множини і нехай . Якщо з умови , де , випливає нерівність , то говорять, що відображення зберігає порядок.
Відображення є ізоморфізмом частково впорядкованих множин та , якщо воно бiєктивне, а співвідношення справджується тоді й тільки тоді, коли . Самі множини і при цьому ізоморфні.