Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Диференціал функції

Нехай функція диференційована в точці . Тоді її приріст у цій точці можна подати у вигляді

 

,

 

де при . Отже, доданок є головною частиною приросту функції, яка лінійно залежить від .

Диференціалом функції в точці називається головна частина приросту функції в цій точці, яка лінійно залежить від .

Диференціал функції позначається так:

 

.

 

Враховуючи, що , маємо

.

 

Диференціалом незалежної змінної називається її приріст: .

Отже,

.

 

Із останньої формули випливає, що похідну можна обчислити як відношення диференціалів:

 

.

Диференціал функції має наступний геометричний зміст. Нехай точка (рис. 21) на графіку функції має координати , де .

 
 

 
 

 

 

Пряма - дотична до графіка функції в точці . Тоді приріст в точці , який відповідає приросту аргументу, рівний величині відрізка . Оскільки і , то, враховуючи, що , маємо: диференціал функції в точці дорівнює приросту ординати дотичної, проведеної до графіка функції в точці з абсцисою , тобто дорівнює величині відрізка .

Оскільки диференціал функції є головною частиною її приросту, то це дає можливість застосувати диференціал функції в наближених обчисленнях: із наближеної рівності , тобто

 

.

 

Отже

 

(1)

 

 

Приклад. Знайти наближено .

Розв'язування.Розглянемо функцію . Покладемо . Тоді . Далі маємо .

Отже, .

Якщо функції диференційовані, то мають місце наступні формули:

 

,

,

,

.

 

Нехай тепер маємо складену функцію , де диференційовані функції в точках і . Тоді

 

.

 

Так як

,

то

.

 

Оскільки , то маємо .

Таким чином, якщо функція складена, то форма диференціалу не змінює свого виду. Цю властивість називають інваріантністю форми диференціалу.

 


Читайте також:

  1. Адвокатура в Україні: основні завдання і функції
  2. Алгоритм знаходження ДДНФ (ДКНФ) для даної булевої функції
  3. Але відмінні від значення функції в точці або значення не існує, то точка називається точкою усувного розриву функції .
  4. Аналіз коефіцієнтів цільової функції
  5. АРХІВНІ ДОВІДНИКИ В СИСТЕМІ НДА: ФУНКЦІЇ ТА СТРУКТУРА
  6. Асимптоти графіка функції
  7. Базальні ядра, їх функції, симптоми ураження
  8. Базові функції, логічні функції
  9. Банки як провідні суб’єкти фінансового посередництва. Функції банків.
  10. Банківська система та її основні функції
  11. Банківська система та її структура. Функції Центрального банку.
  12. Банківська система: сутність, принципи побудови та функції. особливості побудови банківської системи в Україн




Переглядів: 1260

<== попередня сторінка | наступна сторінка ==>
Похідна оберненої функції. | Похідні й диференціали вищих порядків

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.003 сек.