Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Контакти
 


Тлумачний словник
Авто
Автоматизація
Архітектура
Астрономія
Аудит
Біологія
Будівництво
Бухгалтерія
Винахідництво
Виробництво
Військова справа
Генетика
Географія
Геологія
Господарство
Держава
Дім
Екологія
Економетрика
Економіка
Електроніка
Журналістика та ЗМІ
Зв'язок
Іноземні мови
Інформатика
Історія
Комп'ютери
Креслення
Кулінарія
Культура
Лексикологія
Література
Логіка
Маркетинг
Математика
Машинобудування
Медицина
Менеджмент
Метали і Зварювання
Механіка
Мистецтво
Музика
Населення
Освіта
Охорона безпеки життя
Охорона Праці
Педагогіка
Політика
Право
Програмування
Промисловість
Психологія
Радіо
Регилия
Соціологія
Спорт
Стандартизація
Технології
Торгівля
Туризм
Фізика
Фізіологія
Філософія
Фінанси
Хімія
Юриспунденкция






Аналіз розв’язків спряжених економіко-математичних задач

Приклад економічної інтерпретації пари спряжених задач

Самостійна роботи №5 – Приклади застосування теорем двоїстості для знаходження оптимальних планів задач лінійного програмування

Приклади застосування теорії двоїстості для знаходження оптимальних планів прямої та двоїстої задач [2, с.75-82],[3, с.122-128].

2. Вітлінський В.В., Наконечний С.І., Терещенко Т.О. Математичне програмування: Навчально-методичний посібник для самост. вивч.дисц. – 2-е вид., без змін. – К.: КНЕУ, 2006. – 248 c.

3. Наконечний С. І., Савіна С. С. Математичне програмування: Навч. посіб. – К.: КНЕУ, 2003. – 452 с.

 

Економічну інтерпретацію прямої та двоїстої задач і проведення післяоптимізаційного аналізу розглянемо на прикладі задачі оптимального використання обмежених ресурсів.

Для виробництва n видів продукції використовується m видів ресурсів, запаси яких обмежені значеннями . Норми витрат кожного ресурсу на виробництво одиниці продукції становлять . Ціна реалізації одиниці продукції j-го виду дорівнює . Математична модель цієї задачі має такий вигляд:

; (6.1)

; (6.2)

. (6.3)

Сутність прямої задачі полягає у визначенні такого оптимального плану виробництва різних видів продукції , який дав би змогу одержати найбільшу виручку від її реалізації.

Двоїста задача до сформульованої у такий спосіб прямої буде такою:

; (6.4)

; (6.5)

. (6.6)

Економічний зміст двоїстої задачі полягає у визначенні такої оптимальної системи оцінок ресурсів уі, що використовуються для виробництва продукції, за якої загальна вартість усіх ресурсів була б найменшою. Змінні двоїстої задачі означають цінність одиниці і-го ресурсу.

Розглянемо викорис­тання двоїстих оцінок на прикладі аналізу економіко-мате­матичних моделей виду (6.1)-(6.3) та (6.4)-(6.6).

Приклад 6.1. Деяке підприємство виробляє чотири види продук­ції А, В, С, і D, використовуючи для цього три види ресурсів 1, 2 і 3. Норми витрат ресурсів на виробництво одиниці кожного виду продукції (в умовних одиницях) наведено в табл.6.1.

Таблиця 6.1

 

Відомі також ціни реалізації одиниці продукції кожного виду: для продукції А– 2 ум. од., для продукції В і D – по 4 ум. од., для продукції С – 3 ум. од.

Необхідно визначити оптимальний план виробництва продукції кожного виду за умов обмеженості запасів ресурсів, який дав би змогу підприємству отримати найбільшу виручку від реалізації продукції.

Розв’язання. Математичні моделі прямої (6.7) та двоїстої (6.8) задач мають такий вигляд:

(6.7)

де хj – обсяг виробництва продукції j-го виду ;

(6.8)

де yi – оцінка одиниці і-го виду ресурсу .

Симплексна таблиця, що відповідає оптимальному плану сфор­мульованої вище задачі має вигляд:

 

Наведена симплекс-таблиця містить оптимальні плани прямої та двоїстої задач. Оптимальний план прямої задачі позначимо через , а оптимальний план двоїстої – Y*.

Х* = (0; 0; 35; 45; 0; 30; 0), max Z = 285;

Y* = (4; 0; 3) ´ = (1/2; 0; 2);

min F = 250/2 + 160 = 285 = max Z.

 

Основні змінні оптимального плану прямої задачі означають обсяги виробництва відповідних видів продукції. Отже, випуск продукції видів А та В не передбачається (х1 = х2 = 0), а С і D – планується у кількості відповідно 35 та 45 од.

Додаткові змінні оптимального плану прямої задачі х5, х6, х7 характеризують залишки (невикористані обсяги) ресурсів відповідно 1, 2 та 3. Оскільки х6=30, то це означає, що другий ресурс використовується у процесі виробництва продукції не повністю. Перший та третій ресурси за оптимального плану виробництва будуть використані повністю, бо х5 = х7 = 0.

За такого плану виробництва продукції підприємство отримало б найбільшу виручку обсягом 285 ум.од.

Відомо, що між змінними прямої та двоїстої задач існує відповідність виду:

 

Оптимальний план двоїстої задачі дає оптимальну систему оцінок ресурсів, що використовуються у виробництві.

Основні змінні двоїстої задачі за наведеною схемою відповідають додатковим змінним прямої, що характеризують обсяги невикористаних ресурсів. Отже, отримані значення змінних у1, у2 та у3 можна використати для відносної кількісної оцінки важливості відповідних видів ресурсів. Так, у1 = 1/2 та у3 = 2 відмінні від нуля, а ресурси 1 та 2 (за значеннями додаткових змінних прямої задачі) використовуються повністю. Двоїста оцінка у2 = 0 і відповідний вид ресурсу не повністю використовується за оптимального плану виробництва продукції. Це підтверджується також попереднім аналізом додаткових змінних оптимального плану прямої задачі. Крім того, за третьою теоремою двоїстості відомо: якщо деяка основна змінна оптимального плану двоїстої задачі уі ¹ 0, то зміна (збільшення або зменшення) обсягу відповідного і-го ресурсу приводить до зміни значення цільової функції на величину уі. Якщо уі = 0, то значення цільової функції залишається незмінним.

Отже, у1 = 1/2 означає, що коли запас першого ресурсу збільшити на одну умовну одиницю (b1 = 250 + 1 = 251), то значення цільової функції max Z збільшиться за інших однакових обставин на у1 = 1/2 ум. од. і становитиме max Z = 285 + 1/2 = 285,5 ум.од. Аналогічно збільшення на одну умовну одиницю третього ресурсу (b3 = 80 + 1 = 81) приведе за інших однакових умов до збільшення цільової функції на у3 =2 ум.од., що становитиме max Z = 285 + 2 = 287 ум. од. Лише незначні зміни обсягу другого ресурсу ніяк не впливатимуть на значення цільової функції, оскільки у2 = 0.

Додаткові змінні оптимального плану двоїстої задачі відповідають основним змінним прямої задачі і, оскільки останні означають обсяги виробництва кожного виду продукції, відповідні їм у4, у5, у6 та у7 також у певний спосіб мають характеризувати виробництво відповідних видів продукції. За правилами побудови двоїстої задачі очевидно, що додаткові змінні оптимального плану двоїстої задачі показують, наскільки вартість ресурсів перевищує ціну одиниці відповідної продукції. Отже, вони відносно характеризують збитковість виробництва відповідних видів продукції.

Додаткові змінні двоїстої задачі розміщуються в оцінковому рядку останньої симплекс-таблиці у стовпчиках «х1» – «х4». Їх оптимальні значення: у4 = 5; у5 = 5/2; у6=0; у7 = 0. Тому витрати на виробництво продукції видів А і В перевищують їх ціну відповідно на 5 та 5/2 ум.од., а для продукції С і D такого перевищення немає. Це підтверджується також попереднім аналізом основних змінних оптимального плану прямої задачі, оскільки за оптимальним планом доцільно виготовляти саме продукцію видів С і D.

Розрахована оптимальна система оцінок забезпечує найменшу загальну вартість усіх ресурсів, що використовуються на підприємстві: min F = 285 ум. од.


Читайте також:

  1. ABC-XYZ аналіз
  2. II. Багатофакторний дискримінантний аналіз.
  3. SWOT-аналіз у туризмі
  4. SWOT-аналіз.
  5. Tема 4. Фації та формації в історико-геологічному аналізі
  6. V. Нюховий аналізатор
  7. АВС (XYZ)-аналіз
  8. Автомати­зовані інформаційні систе­ми для техніч­ного аналізу товар­них, фондових та валют­них ринків.
  9. Алгоритм однофакторного дисперсійного аналізу за Фішером. Приклад
  10. Алгоритм розв’язання задачі
  11. Алгоритм розв’язання розподільної задачі
  12. Алгоритм розв’язування задачі




Переглядів: 1275

<== попередня сторінка | наступна сторінка ==>
 | Оцінка рентабельності продукції, яка виробляється, і нової продукції

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.004 сек.