МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
||||||||||||||||||||||||||||||||||||||||||||||
АНАЛІЗ ПЕРСПЕКТИВНИХ НАПРЯМІВ|направлень| РОЗВИТКУ МЕТОДІВ РОЗПІЗНАВАННЯЗВІДНА|зведена| ТАБЛИЦЯ КЛАССИФФІКАЦИІ МЕТОДІВ РОЗПІЗНАВАННЯ Отже залишається недостатньо розробленим питання про практичну застосовність тих або інших теоретичних методів розпізнавання для вирішення практичних завдань|задач| при реальній (тобто досить значних) розмірності даних і на реальних сучасних комп'ютерах. Вищезазначена обставина може зрозуміти, якщо нагадати, що складність математичної моделі експоненціально збільшує трудомісткість програмної реалізації системи і в такій же мірі зменшує шанси на те, що ця система практично працюватиме. Це означає, що реально на ринку можна реалізувати лише такі програмні системи, в основі яких лежать досить прості і “прозорі” математичні моделі. Тому розробник, зацікавлений в тиражуванні свого програмного продукту, личить до питання про вибір математичної моделі не з чисто наукової точки зору, а як прагматик, з врахуванням можливостей програмної реалізації. Він вважає, що модель має бути як можна простіше, а значить реалізуватися з меншими витратами і якісніше, а також повинна обов'язково працювати (бути практично ефективною). В зв'язку з цим особливо актуальним представляється задачі реалізації в системах розпізнавання механізму узагальнення описів об'єктів, що відносяться до одного класу, тобто механізм формування компактнихузагальнених образів. Вочевидь, що такий механізм узагальнення дозволить “стискувати” будь-яку по розмірності повчальну вибірку до заздалегідь відомої по розмірності бази узагальнених образів. На закінчення короткого огляду методів розпізнавання представимо|уявлятимемо| суть вищевикладеного в звідній|зведеній| таблиці, а також у формі у вигляді диаграмы|: 1. класифікація методів розпізнавання; 2. сфери застосування методів розпізнавання; 3. класифікація обмежень методів розпізнавання.
ПОРІВНЯННЯ ЇХ СФЕР ЗАСТОСУВАННЯ І ОБМЕЖЕНЬ (НЕДОЛІКІВ|нестач|)
Аналіз перспективних напрямів|направлень| розвитку методів розпізнавання показує, що для успішного досягнення мети дослідження необхідно вирішити (або обійти) наступні|слідуючі| проблеми: комбінаторного вибуху; досягнення незалежності часу розпізнавання від розмірності навчальної вибірки; коректного зниження розмірності простору|простір-час| ознак без істотної|суттєвої| втрати значимої|значущої| інформації, що міститься|утримується| в них; досягнення високою валидности| результатів аналізу. Перша і друга проблеми мають схоже походження і виникають при спробі прямого перебору варіантів кластеризації і в багатьох методах розпізнавання. Третя - при виявленні найбільш істотного і відкиданні відносно неістотного в створених Системою образах. Аналогічну проблему вирішує художник, коли переносить на двовимірне полотно зображення тривимірного пейзажу, причому так, щоб при цьому збереглася максимальна впізнанність цього пейзажу. Практично працюючий програмний засіб, що реалізовує дану функцію, повинен коректно знижувати розмірність простору опису від декількох тисяч, до сотень або навіть десятків ознак. На практиці зниження розмірності простору ознак зводиться до двох завдань: по-перше визначення цінності ознак для вирішення задачі розпізнавання, і, по-друге, відкидання незначимих ознак. Зробити це коректно не так просто у зв'язку з тим, що всі ознаки, взагалі кажучи, взаємозв'язані і цінність одних ознак може мінятися вельми значно при відкиданні інших, навіть неістотних ознак. Четверта - при розробці такої математичної моделі і програмної реалізації Системи, які б забезпечували найбільш високий рівень відповідності істоти виконуваних Системою операцій, що моделюють процеси сприйняття і пізнання (а також їх результатів) інтуїтивному розумінню користувачем і експертом подібних процесів в психіці людини. З досвіду математичного експерименту відомо, що результати кластерного аналізу і навіть ідентифікації на жаль дуже часто не відповідають уявленням людини-експерта про даної наочної області, хоча і відповідають логіці математичної моделі. Це означає, що такі моделі володіють низькими зовнішньою валидностью, тобто не відображають істоту тих процесів обробки інформації, за допомогою яких нормальна компетентна людина і у нормальному стані свідомості реалізує аналогічні когнітивні функції. Отже, перспективна математична модель і її програмна реалізація повинні забезпечувати інтуїтивно зрозумілу змістовну інтерпретацію при вживанні в тих наочних областях, в яких у людини-експерта є розвинена і адекватна реальності система орієнтації. На думку авторів, саме вживання такого роду моделей можна вважати коректним, оскільки інакше важко сказати, як можна застосувати результати їх роботи. Даний підхід дозволяє обгрунтовано сподіватися на те, що і в нових маловивчених областях така модель дасть коректні результати і задовольнить потреби людини, що пізнає, в тієї або іншої наочної області. Доречно відзначити, що багато перспективних розробок систем розпізнавання орієнтуються на ще не створені перспективні обчислювальні системи або на дуже потужні, а значить рідкі, дорогі і недоступні для масового користувача комп'ютери. Ця обставина переводить подібні розробки в категорію фундаментальних наукових досліджень, які в даний час в реальних умовах мало ким можуть бути реально використані. Читайте також:
|
|||||||||||||||||||||||||||||||||||||||||||||||
|