Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Математична постановка задач лінійного програмування. Система гіпотез.

ЗАГАЛЬНА ЗАДАЧА ЛІНІЙНОГО ПРОГРАМУВАННЯ ТА МЕТОДИ ЇЇ РОЗВ'ЯЗУВАННЯ

Приклади економічних проблем, які доцільно розв’язувати, використовуючи методи і моделі математичого програмування.


 

ТЕМА 2

Загальна лінійна математична модель економічних процесів і явищ — так звана загальна задача лінійного програмування (ЛП) подається у вигляді:

знайти максимум (мінімум) функції

або

за умов

Отже, потрібно знайти значення змінних , які задовольняють умови (2.2) і (2.3), тоді як цільова функція набуває екстремального (максимального чи мінімального) значення.

Задачу (2.1)—(2.3) легко звести до канонічної форми, тобто до такого вигляду, коли в системі обмежень (2.2) всі невід'ємні, а всі обмеження є рівностями.

Якщо якесь bi від'ємне, то, помноживши i-те обмеження на (–1), дістанемо у правій частині відповідної рівності додатне значення. Коли i-те обмеження має вигляд нерівності то останню завжди можна звести до рівності, увівши допоміжну змінну .

Аналогічно обмеження виду зводимо до рівності, віднімаючи від лівої частини допоміжну змінну , тобто .

Приклад 2.1. Записати в канонічній формі таку задачу ЛП:

за умов

Розв'язування. Помножимо другу нерівність на (–1) і введемо відповідно допоміжні змінні x4 і x5 для другого та третього обмеження:

Неважко переконатися, що допоміжні змінні, у цьому разі x4 і x5, є невід'ємними, причому їх уведення не змінює цільової функції.

Отже, будь-яку задачу ЛП можна записати в такій канонічній формі:

знайти максимум функції

за умов

Задачу (2.4)—(2.6) можна розв'язувати на мінімум, якщо цільову функцію помножити на (–1), тобто

 


Читайте також:

  1. Active-HDL як сучасна система автоматизованого проектування ВІС.
  2. II. Бреттон-Вудська система (створена в 1944 р.)
  3. IV. Система зв’язків всередині центральної нервової системи
  4. IV. УЗАГАЛЬНЕННЯ І СИСТЕМАТИЗАЦІЯ ВИВЧЕНОГО
  5. V. Систематизація і узагальнення нових знань, умінь і навичок
  6. VI. Система навчаючих завдань для перевірки кінцевого рівня завдань.
  7. VI. Система навчаючих завдань для перевірки кінцевого рівня завдань.
  8. VI. Узагальнення та систематизація знань
  9. VII. Закріплення нового матеріалу і систематизація знань.
  10. Автоматизація водорозподілу на відкритих зрошувальних системах. Методи керування водорозподілом. Вимірювання рівня води. Вимірювання витрати.
  11. Автоматизована система ведення державного земельного кадастру
  12. Автоматична система сигналізації




Переглядів: 1125

<== попередня сторінка | наступна сторінка ==>
Знайти такі значення керованих змінних Хj щоб цільова функція набувала екстремального (максимального чи мінімального) значення. | Визначення множини допустимих планів задачі ЛП

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.019 сек.