МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Геометричний метод розв’язування ЗЛП
Для ЗЛП з двома невідомими процес вибору оптимального плану з кутових точок області допустимих розв’язків можна проводити за допомогою графічного зображення цієї області. Для цього в декартовій системі координат креслимо многокутник розв’язків системи обмежень (як перетин множин розв’язків кожної нерівності системи), а потім, враховуючи напрямок зростання цільової функції, обираємо оптимальну вершину цього многокутника і знаходимо її координати. Розглянемо докладніше процес побудови області допустимих розв’язків. Як відомо, графічним зображенням множини розв’язків лінійного рівняння з двома невідомими є пряма на координатній площині. Геометричним місцем точок з координатами, що задовольняють лінійну нерівність, є одна з двох напівплощин, на які поділяє площину пряма з відповідним рівнянням. Для визначення, яку саме напівплощину треба обрати, достатньо перевірити виконання нерівності в одній з точок площини. Наприклад, побудуємо графічний розв’язок нерівності (рис. 1). Розглянемо рівняння і побудуємо пряму, яка є множиною його розв’язків на площині . Рис. 1. Графічний розв’язок лінійної нерівності. Ця пряма поділяє площину на дві напівплощини. Перевіримо виконання нерівності у початку координат. Для цього підставимо у нерівність . Отримаємо , що не є вірною нерівністю. Тому у початку координат нерівність не виконується, і також вона не виконується у всіх точках тієї напівплощини, до якої належить початок координат. Тому шуканий розв’язок нерівності – це напівплощина, що лежить нижче від прямої. На рисунку це затонована напівплощина. Інша напівплощина є розв’язком нерівності . Якщо задана система нерівностей, то для її розв’язання треба на одній координатній площині побудувати графічний розв’язок кожної нерівності і знайти перетин отриманих напівплощин. Наприклад, розв’язком системи
є трикутник, що залишився незаштрихованим на рисунку 2.
Рис. 2. Графічний розв’язок системи лінійних нерівностейі.
Розглянемо тепер поведінку цільової функції у точках площини. Лінією рівня (тобто лінією, на якій функція зберігає стале значення) лінійної цільової функції є пряма. Сімейство таких прямих має спільний вектор нормалі , тобто усі прямі сімейства є паралельними одна одній. Якщо така пряма проходить через початок координат, то значення цільової функції в її точках дорівнює 0. Напрямок зростання значень цільової функції теж визначається напрямком вектора (рис. 3). Таким чином, для знаходження найбільшого значення цільової функції в області припустимих розв’язків треба побудувати таку пряму, яка має заданий вектор нормалі , проходить через область припустимих розв’язків та розташована якомога далі у напрямку вектора . При знаходженні найменшого значення функції треба обирати пряму, яка розташована якомога далі у напрямку, протилежному вектору .
Рис. 3. Лінії рівня цільової функції.
Приклад 2. Розв’яжемо геометричним методом задачу про використання сировини, яка задана формулами (6), (7) (рис. 4). Областю допустимих розв’язків цієї задачі є шестикутник . Лінії рівня цільової функції перпендикулярні вектору . Якщо зсувати, наприклад, пряму у напрямку вектора , значення функції зростатиме. Максимально можливий зсув досягається у вершині , тобто . Координати точки знаходимо як координати точки перетину двох прямих, розв’язуючи систему рівнянь
.
Підставивши до цільової функції координати знайденої точки, знаходимо . Рис. 4. Приклад геометричного розв’язання ЗЛП. Читайте також:
|
||||||||
|