Перший періодичний дріб є чистим, а тому використаємо перше правило: 0,(243)= . Тепер слід скоротити чисельник і знаменник на їхній найбільший спільний дільник. Ми проведемо це скорочення поступово. Оскільки 2439 і 9999, то скоротимо спочатку на 9. Маємо дріб . Ще можна скоротити на 3, тоді . Оскільки 37 – просте число, то – нескоротний дріб. Таким чином, 0,(243)= . Для другого дробу, який є мішаним періодичним, маємо 0,134(27)= =. Пропонуємо студентам самостійно провести скорочення цього звичайного дробу, якщо це можливо!
Таким чином, у цьому пункті ми з’ясували, що кожний звичайний дріб можна представити у вигляді скінченного чи нескінченного періодичного дробу. В математиці також доведено, що кожний скінченний десятковий дріб можна представити у вигляді нескінченного періодичного десяткового дробу з періодом 0 або з періодом 9. Отже, множину раціональних чисел можна розглядати як множину періодичних десяткових дробів. Це означає, що в ній будуть справедливими всі ті теореми і правила, які доводилися для множини раціональних чисел.