![]()
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Малюнок № 6.1. Графік рівняння кола.
Вона має властивість Виберемо систему координат і в ній пряму, яка проходить через початок координат. Виберемо на цій прямій точку
Малюнок № 6.2. Графік рівняння у=kx. Відношення у1:х1 не залежить від вибору точки на прямій. Для доведення цього факту візьмемо на прямій ще одну точку Доведемо обернене: будь-яка точка М1(х1;у1), координати якої задовольняють рівняння у=kх, належить прямій, що задається рівнянням у=kх. Дійсно на прямій у=kx завжди є точка К з абсцисою х1, тобто К(х1;у). Тоді ордината у цієї точки дорівнює kx1. Отже, К(х1; kx1). Це означає, що у=у, тобто К і Число k називають кутовим коефіцієнтом прямої.З’ясуємо, який знак має коефіцієнт k в залежності від того, де розміщена пряма? – для цього визначимо знак частки у:х. Ця частка додатна для точок, які розміщенні в І і ІІІ координатних чвертях, і від’ємна – для точок, розміщених в ІІ і ІV чвертях. Таким чином, значення k буде додатнім для прямих, які проходять в І та ІІІ чверті, а від’ємне для прямих, розміщених в ІІ та ІV чверті. Проведемо тепер пряму, яка буде паралельна прямій y=kx і відсікатиме на осі ординат відрізок довжини b. Виберемо на цій прямій довільну точку М(х;у) і опустимо із неї перпендикуляр ММ' на вісь абсцис. Позначимо через М1 точку перетину цього перпендикуляра з прямою у=kх. Із малюнка № 6.2. видно, що ММ'=ММ1+М1М'. Але ордината М1М' точки М1 дорівнює kx, а ММ1=b. Отже, у=ММ1=ММ1+М1М'=kx+b. Таким чином, ми довели, що координати будь-якої точки прямої задовольняють рівнянню у=kx+b. Отже, пряма має рівняння у=kx+b. Число b називають початковою ординатою прямої, а рівняння виду у=kx+b – рівнянням прямої з кутовим коефіцієнтом. Розглянемо дві прямі L1 та L2 які не проходять через початок координат. якщо прямі паралельні, то вони будуть паралельними одній і тій же прямій, яка проходить через початок координат. Що можна сказати про кутові коефіцієнти цих прямих? – вони будуть однакові. Навпаки, якщо кутові коефіцієнти цих прямих рівні, то прямі паралельні прямій, яка проходить через початок координат. Таким чином, для того, щоб дві прямі були паралельні (якщо жодна із них не паралельна осі координат), необхідно і достатньо, щоб їх кутові коефіцієнти були рівними. Сказане символічно можна записати так: k1=k2. Виведемо умову перпендикулярності двох прямих. Проведемо через початок координат дві взаємно перпендикулярні прямі у=k1x і y=k2x. Одна із цих прямих утворює з додатнім напрямком осі абсцис гострий кут, а друга – тупий. Тоді знаки кутових коефіцієнтів цих прямих різні, один додатній, а другий – від’ємний. На першій прямій виберемо точку М1(х1;у1), а на другій – точку М2(х2;у2) (див. малюнок № 6.3.). Кути M1ON1 і M2ON2 рівні, а тому трикутники M1ON1 і M2ON2 подібні. З подібності цих трикутників випливає пропорційність сторін. Отже, маємо │у1:х1│=│у2:х2│. Але │у1:х1│=│k1│ і │у2:х2│=│k2│, а тому
Читайте також:
|
||||||||
|