МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Непрямі доведення.Зведення до абсурду. Цей метод полягає в тому, що в теоремі А В припускають, що правильним буде . Якщо в результаті цього припущення приходять до неправильного висновку, абсурду, то роблять висновок, що наслідок В теореми А В правильний. Цим способом доводять, наприклад, таку теорему: Якщо дві різні прямі а і b паралельні третій прямій с, то вони паралельні між собою. Припустимо , тобто а і b не паралельні. Тоді вони перетинаються в якійсь точці К, яка не належить с. Дістанемо, що через точку К поза прямою с можна провести дві прямі а і b, які паралельні с, а це суперечить аксіомі паралельності, тобто є хибним твердженням. Отже, правильним твердженням є В. Метод від супротивного. Цей спосіб ґрунтується на законі контрапозиції А В = . Теорема: Довести, що коли аb– непарне число, то обидва множники а і b – непарні цілі числа. Позначимо А: «добуток аb– непарне число», Т: «а – непарне число», S: «b – непарне число». Тоді теорема скорочено запишеться так: A S T, або А В, де В «S T». Припустимо, що = = , тобто один із множників а або b є парним числом. Нехай, наприклад, а – парне, тобто а = 2m, m Z. Тоді ab = 2mb – парне число, тоді дістали . Таким чином довели теорему , а цим самим і дану теорему А В. Поширеним прикладом неправильних міркувань є непродумане використання неповної індукції, коли загальний висновок зроблено на основі окремих спостережень, експериментів, розгляду скінченної кількості їх. Використання неповної індукції може привести як до правильних, так і неправильних висновків. Так, побудувавши кілька графіків лінійних рівнянь з двома змінними в прямокутній системі координат і побачивши, що вони є прямими лініями, робимо висновок, що графік кожного лінійного рівняння з двома змінними є пряма лінія. Цей умовивід – правильний. Прикладом, коли неповна індукція приводить до хибного результату є теорема Ферма. Ще у XVII ст. математик П. Ферма (1601 – 1665) помітив, що числа виду Fn =22n+1 при n = 0, 1, 2, 3, 4 – прості: F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537. Ферма висловив припущення, що при будь-якому n N числа такого виду є простими (їх стали називати простими числами Ферма). Ця гіпотеза була висловлена на основі кількох обчислювальних експериментів. У 1732 р. видатний математик Л. Ейлер (1707 – 1783) показав, що при n = 5 F5 = 4294967297 = 641 ∙ 6700417, тобто F5 не є простим числом. Цей контрприклад спростував гіпотезу Ферма. § 3. Математичні поняття. Особливості математичних понять. Об'єм і зміст поняття. Означення понять. Структура означення понять через рід і видову відмінність План 1. Поняття як форма мислення. Особливості математичних понять. 2. Зміст і обсяг поняття, відношення між ними. 3. Способи означення математичних понять. 4. Вимоги до означення понять. 5. Приклади математичних понять, які розглядаються в початковому курсі математики. Читайте також:
|
||||||||
|