Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Нескінченно малі й нескінченно великі функції

 

 

Нескінченно малі функції. Функція називається нескінченно малою в точці ( або при ), якщо .

Аналогічно означаються нескінченно малі функції при .

Виходячи з означень границі функції за Гейне і за Коші, можна навести наступні рівносильні означення нескінченно малої функції.

Функція називається нескінченно малою в точці , якщо для будь-якої збіжної до послідовності значень аргументу , відмінних від , відповідна послідовність є нескінченно малою.

Функція називається нескінченно малою в точці , якщодля довільного числа існує число таке, що нерівність виконується для всіх , які задовольняють умову .

Теорема . Число є границею функції у точці тоді і тільки тоді, коли , де – нескінченно мала функція в точці .

Доведення. Нехай . Покажемо, що різниця є нескінченно малою в точці . Дійсно,

 

.

 

Нехай тепер , де – нескінченно мала функція в точці . Тоді

 

.

 

Нескінченно малі функції мають такі ж властивості, як і нескінченно малі послідовності:

алгебраїчна сума скінченного числа нескінченно малих у точці функцій є нескінченно малою в точці функцією;

добуток скінченного числа нескінченно малих у точці функцій, а також добуток нескінченно малої функції на обмежену функцію є нескінченно малою в точці функцією.

 

Викладене вище має місце також для нескінченно малих функцій функції при .

Нескінченно великі функції. Нехай функція визначена в деякому околі точки .

Функція називається нескінченно великою в точці , якщо для будь-якого числа існує число таке, що для всіх , які задовольняють умову , виконується нерівність .

Означення нескінченно великої в точці функції можна дати мовою послідовностей.

Функція називається нескінченно великою в точці , якщо для будь-якої збіжної до послідовності , відповідна послідовність значень функції є нескінченно великою.

Символічно це записують так: і говорять, що функція у точці має нескінченну границю.

Якщо при , то пишуть

.

Аналогічно означенням границі на нескінченності та скінченних односторонніх границь означаються нескінченні границі. При цьому використовуються відповідні записи, наприклад:


Читайте також:

  1. Адвокатура в Україні: основні завдання і функції
  2. Алгоритм знаходження ДДНФ (ДКНФ) для даної булевої функції
  3. Але відмінні від значення функції в точці або значення не існує, то точка називається точкою усувного розриву функції .
  4. Аналіз коефіцієнтів цільової функції
  5. АРХІВНІ ДОВІДНИКИ В СИСТЕМІ НДА: ФУНКЦІЇ ТА СТРУКТУРА
  6. Асимптоти графіка функції
  7. Базальні ядра, їх функції, симптоми ураження
  8. Базові функції, логічні функції
  9. Банки як провідні суб’єкти фінансового посередництва. Функції банків.
  10. Банківська система та її основні функції
  11. Банківська система та її структура. Функції Центрального банку.
  12. Банківська система: сутність, принципи побудови та функції. особливості побудови банківської системи в Україн




Переглядів: 6067

<== попередня сторінка | наступна сторінка ==>
Визначні границі | Порівняння нескінченно малих функцій. Еквівалентні нескінченно малі функції.

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.017 сек.