МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Економіко-математичні методи аналізу.
Застосування економіко-математичних методів (ЕММ) у системі функціонування організації викликано необхідністю підвищення ефективності процесів виробництва і обслуговування за умови раціонального використання наявних ресурсів через прийняття оптимальних управлінських рішень. Основою формулювання економічної оптимізаційної задачі є можливість взаємозамінності способів виробництва товарів (надання послуг), допустимість багатьох варіантів використання матеріальних, трудових, фінансових, інформаційних ресурсів і вибору кращих з них. Математичне програмуванняохоплює задачі пошуку екстремуму функції за наявності обмежень. Загальне завдання математичного програмування формулюється так: знайти величини керуючих факторів, при яких забезпечується максимум (мінімум) заданої цільової функції в області допустимих значень, що визначається деяким набором обмежень. Оптимальність розв'язку означає, насамперед, його допустимість (тобто сумісність з усіма заданими умовами, що враховуються під час прийняття рішення). З усіх допустимих розв'язків оптимальним є той, для якого досягається екстремальне (максимальне чи мінімальне) значення критерію ефективної моделі. Формально багато проблем функціонування організацій можна пов'язати з раціональним використанням тих чи інших ресурсів, що дозволяє використати для їх розв'язання методи математичного програмування. Загальна структура оптимізаційних моделей складається із цільової функції,яка набуває значення в межах обмеженого умовами задачі (області допустимих розв'язків), та із обмежень,що характеризують ці умови. Цільова функціяв загальному вигляді визначається трьома моментами: керованими змінними, некерованими параметрами (залежними, наприклад, від зовнішнього середовища) і видом (формою) залежності між ними (видом функції). Загальний вигляд оптимізаційної моделі такий:
де U – критерій оптимальності; х=(х1, х2,...,хn) – керовані змінні; р=(р1, р2,...,рn) – параметри; М – задані межі (область) зміни керованих зміних.
Задачі такого виду розв'язують методами математичного програмування, в яке входить лінійне, нелінійне, динамічне, цілочислове програмування та ін. Вибір методів математичного програмування для розв'язування оптимізаційних задач визначається видом цільової функції: обмежень, що визначають область зміни керованих змінних (наприклад, вимоги їх чисельності). Розв'язок задачі називається оптимальним рішенням або оптимальним планом. Задачі лінійного програмування. У загальному вигляді задача лінійного програмування (ЗЛП) формулюється так: знайти вектор х=(х1, х2,...,хn) який максимізує (мінімізує) лінійну цільову функцію:
а також задовольняє лінійні функціональні обмеження:
Крім того вектор повинен задовольняти прямі обмеження:
Ця задача може бути записаною в канонічній формі, при якій функціональні обмеження мають вигляд рівностей. Цього досягають додаванням до лівих частин цих обмежень m додаткових невід'ємних змінних. ЗЛП у канонічній формі розв'язують симплексним методом. Вирішення ЗЛП дає змогу знайти оптимальне управлінське рішення для різноманітних випадків, зокрема таких: V оптимізація закріплення споживачів до постачальників; V оптимізація завантаження виробничих потужностей; V складання оптимальних сумішей (рецептів); V оптимальний розкрій промислових матеріалів; V оптимізація маршрутів комівояжерів тощо. Задачі нелінійного програмування.Методи нелінійного програмування застосовують для розв'язування оптимізаційних задач, в яких цільова функція або обмеження (або перше і друге одночасно) характеризуються нелінійними залежностями. Ознаками нелінійності є, зокрема, наявність змінних, в яких показник степеня відмінний від одиниці, а також наявність змінного в показнику степеня, під коренем, під знаком логарифму. У разі нелінійності цільової функції оптимальне значення досягається не тільки на межі області допустимих значень (як це відбувається в задачах лінійного програмування), а всередині області, що значно ускладнює пошук оптимального значення. Також можливі варіанти, коли існуватимуть так звані локальні екстремальні точки, в той час як дослідника цікавить єдиний глобальний екстремум, де досягається шукане оптимальне значення. Нелінійність обмежень може привести до випадку з неопуклою областю допустимих значень, що надзвичайно ускладнює побудову ефективних алгоритмів пошуку оптимальних значень. З цього класу найбільш досліджені задачі з опуклими цільовими функціями при лінійного виду обмеженнях (існує єдиний оптимальний розв'язок). До розв'язування даного класу задач можна залучити ряд стандартних градієнтних або ньютонівських методів розв'язування. Ці методи реалізовані у спеціалізованих пакетах математичного програмного забезпечення. Прикладомцього класу задач є задача про розміщення складів, коли необхідно мінімізувати загальну суму транспортних і складських витрат при таких обмеженнях: => з кожного підприємства повинна бути відвантаженою вся продукція; => не може бути перевищеною місткість будь-якого складу; => повинні бути задоволені всі замовлення усіх споживачів. У процесі розв'язування задачі знаходять оптимальну за мінімумом затрат тричленну комбінацію: підприємство - склад - споживач. Читайте також:
|
||||||||
|